歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。
歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何?
歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。
此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。
本文為「經濟部產業技術司科技專案成果」
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。
英國推動農場資料認證計畫,首重資料生成、保護與維護管理英國Farm Data Principles組織(下稱FDP,前身為英國農場資料委員會(The British Farm Data Council)),在2024年2月26日英國農業科學技術跨黨派小組(All Party Parliamentary Group for Science & Technology in Agriculture)於西敏寺辦理的會議,正式宣告農場資料認證計畫,FDP強調因目前欠缺資料治理原則,導致缺乏信任等資料使用障礙,並指出若未事先約定資料如何使用等,將致無法明確保護資料。截至目前為止,已經有7個組織取得完全(Full)或臨時(Provisional)認證。 農場資料認證計畫包含四大核心要求,分別為: 1.「您的資料是您的資料(YOUR DATA IS YOUR DATA)」:如強調應由資料生成者擁有及管控資料,且未經其許可,不得接觸、儲存、共享或銷售資料,以及應明確說明參與資料處理的對象等。 2.「通過認證的組織清楚資料共享的價值和好處(CERTIFIED ORGANISATIONS ARE CLEAR ABOUT THE VALUE AND BENEFIT OF DATA SHARING)」:如應針對資料使用範圍及方式,提供明確說明,以及必須解釋如何整合資料及其衍生的價值等。 3.「通過認證的組織須確保資料安全(CERTIFIED ORGANISATIONS KEEP YOUR DATA SAFE)」:如為維護資料安全,應採取適當的資料安全標準及規劃資料外洩處理流程等。 4.「通過認證的組織須努力使資料變得簡單(CERTIFIED ORGANISATIONS STRIVE TO MAKE DATA EASY)」:如提供資料相關教育訓練,以及確保組織能夠回應請求或投訴等。 為因應農業資料於研發過程中的資料應用風險,資策會科法所創意智財中心協助農業部研擬「智慧農業科技研發資料源頭查檢說明手冊」,並於2024年3月14日正式發布,相關手冊所附之資料管理查檢表,可協助智農科技研發者針對資料取得、使用及管理,事先進行整體性規劃,並與不同的資料提供者及合作對象就資料權利義務約定清楚。其中針對資料管理,更依照資料生成、保護及維護的標準化作業流程,設計各階段相應的管控要項,確保農業資料持續處於有效管理的狀態,以降低資料潛在風險,促進資料流通應用。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國網路安全暨基礎設施安全局(CISA)發布《工控資安基礎:適用於擁有者與營運者的資產清冊指引》美國網路安全暨基礎設施安全局(CISA)於2025年8月13日發布該機關與美國、澳洲、加拿大、德國、荷蘭、紐西蘭等國共計八個國安資安相關機構,合作訂定之《工控資安基礎:適用於擁有者與營運者的資產清冊指引》文件,旨在針對易受惡意網路行為攻擊且提供重要服務的能源、水務、製造業及其他領域關鍵基礎設施營運技術(Operational Technology,OT)系統,協助其資產擁有者與營運者建置與維護完整的OT資產清冊,並輔以OT分類體系(Taxonomy)。 OT資產清冊範圍涵蓋組織OT系統與相關軟、硬體,該指引主要說明OT資產擁有者與營運者建置與維護OT資產清冊的流程,包含: 1. 定義清冊範疇與目標(Define Scope and Objectives) 2. 辨識資產及蒐集屬性資料(Identify Assets and Collect Attributes) 3. 建立分類體系(Create a Taxonomy to Categorize Assets) 4. 管理與蒐集資料(Manage and Collect Data) 5. 實現資產全生命週期管理(Implement Life Cycle Management); 此外透過OT分類體系可幫助區分優先序、管理所有OT資產,有助於風險識別、漏洞管理,以及資安事件應變;有關如何建立OT分類體系,該指引亦提供流程建議如: 1. 根據功能及關鍵性執行資產分類(Classify Assets) 2. 對資產功能類型與其通訊路徑進行分類(Categorize (Organize) Assets and their Communications Pathways) 3. 建構體系架構與互動關係(Organize Structure and Relationships) 4. 驗證資產清冊資料準確度與圖像化(Validate and Visualize) 5. 定期檢查並更新(Periodically Review and Update) 該指引認為,建置OT資產清冊並輔以OT分類體系對期望建立現代化防禦架構的擁有者與營運者而言至關重要。透過上述作為,資產擁有者與營運者得以識別其環境中應加以防護及管控的關鍵資產,並據以調整防禦架構,建構相應的資安防禦措施,以降低資安事件對組織任務(Mission)與服務持續性(Service Continuity)的風險與影響。該指引亦強調關鍵基礎設施之OT與IT(資訊技術)部門間之跨部門協作,並鼓勵各產業組織參考指引步驟落實OT資產盤點與分類,以提升整體關鍵基礎設施資安韌性。