歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。
歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何?
歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。
此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。
本文為「經濟部產業技術司科技專案成果」
Converse 一開始僅風靡於運動員、青少年,之後甚至帶動不追求時尚的族群也認得Converse 品牌。Converse早在Nike, Reebok和Adidas等品牌鞋款充滿市場前,以橡膠鞋頭與具識別性的星星圖樣,作為美國的運動鞋品牌,風行一時。 Converse在1917年為籃球運動員製造第一雙運動鞋—All Star,之後更邀請一位極知名的籃球明星Chuck Taylor為代言人,並以其為鞋款命名,引起旋風,成為美國青少年家喻戶曉的品牌,現已於全球累計銷售十億雙。 現在,這間百年鞋類製造商表示,Chuck Taylor鞋款廣泛可被識別的核心要素—黑色條紋和橡膠鞋頭被仿冒,對此,Converse 所屬的Nike公司已於2003年請求損害賠償;復於2008年寄發180封禁止令予販售外觀類似Chuck Taylor鞋款的零售商,藉此保護品牌。然其主要目的在於使仿冒品下架,故,此次,除了於紐約對加拿大、澳洲、義大利、中國與日本等企業提起訴訟,也針對銷售其知名運動鞋款 “Chuck Taylor”仿冒品的大型零售商Wal-Mart 和Ralph Lauren 提起訴訟。另向有權禁止仿冒品進口的美國國際貿易委員會(ITC)申請禁制令,禁止進口、銷售該仿冒鞋款。 Converse 總經理表示感到相當幸運,被公認為美國的流行指標,如此舉動,目的只是在停止仿冒的侵權行為。歡迎公平競爭,但任何公司都沒有權利抄襲Chuck Taylor的商標樣式。
連結稅(link tax)連結稅(link tax)並非政府稅捐,而是網路業者以連結方式擷取新聞內容提供予他人,應向新聞業者協議取得授權,並支付適當費用的俗稱。針對網路業者擷取使用或彙整他人的新聞(例如Google News),導致發布該新聞之新聞業者實際獲得的點擊率與網路流量減少的情形,為了平衡新聞業者與網路業者間的利益,歐盟於2019年通過施行的歐盟數位單一市場著作權指令(The Directive on Copyright in the Digital Single Market)中,訂定網路業者應向新聞業者取得著作使用之授權協議,包含網路業者應與新聞業者分享一定比例之收益。 本條文於草案階段即備受爭議,草案條文(第11條)甚至包含使用超連結(hyperlink)的行為在內,而引發網路業者與使用者的反彈,並戲稱支付使用超連結的費用為繳交超連結稅。而最後通過的條文(第15條),則排除了非商業使用的個人、使用超連結或是僅單詞或簡短摘錄的情形,並將新聞業者的權利限於發表後的兩年以內,且不溯及適用指令施行前發表的新聞。 德國跟西班牙分別於2013年及2014年立法賦予新聞業者類似的權利,但結果顯示新聞業者對於網路業者的依賴,可能還遠大於網路業者擷取新聞業者內容所獲得的利益。法國於2019年7月完成將歐盟著作權指令內國法化,Google也因此調整其擷取政策,除非新聞業者主動完成對擷取內容範圍限制與授權的設定,Google將刪除全部擷取內容;連結稅能否保障新聞業者對其所發布新聞的相關權利,並平衡新聞業者與網路業者間的利益,仍有待觀察。
科技大廠被控剝削開放原始碼社群歐盟執委會( EC )一名資深官員 30 日大聲抨擊幾家美國的大型 IT 企業,指控他們對開放原始碼社群的發展產生過多影響。 EC 的資訊社會與媒體理事會軟體科技首長 Jesus Villasante 表示,如 IBM 、惠普( HP )和昇陽( Sun Microsystems )這些大公司,只是把開放原始碼社群當作承包商,而非鼓勵他們開發獨立的商業產品。 Villasante 在阿姆斯特丹舉行的荷蘭開放軟體大會( Holland Open Software Conference )中指出:「 IBM 會問顧客:你要專有或開放軟體?(如果他們選擇開放原始碼)然後他們會說:好,你要的是 IBM 的開放原始碼軟體。開放原始碼都將變成 IBM 、惠普或昇陽的財產。」 Villasante 說:「這些公司以承包商的模式,利用(開放原始碼)社群的潛能 – 當今的開放原始碼社群,等於是美國跨國企業的承包商。」他呼籲開放原始碼社群應發展更大的獨立性。 他表示:「開放原始碼社群需要看重自己,並瞭解他們對本身和社會都已作出貢獻。從他們瞭解自己是推動社會進化的一部分,並試圖發揮影響的那一刻起,我們才能朝正確的方向前進。」 Villasante 的看法令其他參與討論的成員頗為意外,包括 Sun One Consulting 的首席設計師 James Baty 。業界專家曾表示, IBM 等大公司對開放原始碼軟體的發展,作出相當大的貢獻,他們幫助說服企業與 IT 專業人員相信開放軟體與專有軟體一樣可靠。 Baty 並未直接回應 Villasante 的評論,但表示包括他的雇主在內的大型企業,都有責任奉獻給開放原始碼社群。昇陽捐助若干開放原始碼計劃,包括生產力應用軟體 OpenOffice.org 。 Baty 說:「有些公司僭取了開放原始碼社群的成果,其他公司則抱持他們必須奉獻的態度。(開放原始碼)應被視為一個機會,不是供人奪取和濫用的東西。」 Villasante 也利用稍早的演說,表達對歐洲軟體業的擔憂。他說:「我的看法是,歐洲目前根本沒有軟體產業 – 當今唯一的軟體產業只存在美國,未來或許還會出現在中國或印度。我們應該決定將來是否要建立歐洲的軟體產業。」 Villasante 認為開放原始碼是歐洲軟體產業發產的重要部分,但這種過程卻受到智慧財產遊說團體與傳統軟體業的壓力,及開放原始碼社群本身的分裂所壓抑。他說:「開放原始碼處於徹底的混亂 – 許多人作很多不同的東西。造成現在完全的混亂。」 一位聽眾指出, EC 也要為推動可能損害開放原始碼的軟體專利規章負責。 Villasante 回答,並非所有 EC 的成員都自動支持該規章。他說:「首先,我不負責軟體專利 – 軟體專利規章是由內部(市場)局長管理。資訊協會( Villasante 工作的單位)局長的意見,不一定與內部局長相同。」(陳智文)
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。