世界經濟論壇(World Economic Forum, WEF)於2020年11月10日發表「2020年十大新興科技報告」(Top 10 Emerging Technologies 2020),報告中提出10個近年出現,且被認為在未來5年內最具有正面改變社會潛力的新興科技,並說明除了關注這些科技帶來的改變外,也應關注其引發的風險。
2020年全球最密切關注的議題為健康與氣候變遷,也因此2020年被認為具有發展潛力的新興技術均與這兩個議題有關,包含:(1)無痛注射與測試用的微針技術(Microneedles);(2)太陽能化學(Sun-Powered Chemistry)利用可見光將二氧化碳轉換為普通材料,可作為合成藥物、清潔劑、化學肥料和紡織品的材料;(3)虛擬患者(Virtual Patients),替代人類做人體臨床試驗,比一般試驗更快更安全;(4)空間計算(Spatial Computing)以強化虛擬生活和現實的連結;(5)數位醫療(Digital Medicine)應用程式之發展可以診斷甚至治癒疾病;(6)電動飛航(Electric Aviation)裝置,例如電動推進器可以清除直接碳排放(direct carbon emissions),減少九成的燃料成本、五成維護成本和七成噪音汙染,降低整體航空旅程環境污染並提高效率;(7)低碳水泥(Lower-Carbon Cement)的發展作為氣候變遷下的新興建築材料;(8)量子感測(Quantum Sensing)做為高精準度計算方式,將於未來三到五年進入市場,並首重用於醫療和國防應用產業上;(9)新興零碳能源如綠氫(Green Hydrogen),可補充風力和太陽能;(10)全基因合成(Whole-Genome Synthesis)作為下一代細胞工程(cell engineering)尖端科技,使未來醫學得以治癒更多遺傳疾病。
報告中指出,雖然這些新興技術具有改變社會和產業的潛力,但卻無法確保技術本身是否能被妥善使用(Good is not guaranteed)。首先,這些技術仍需要龐大資金以達到成熟度和可利用的價格點(price point),才能與相關產業達成整合化、規模化。此外面對這些新興科技,決策者必須迅速針對可能引發的風險提出對應策略,例如數位醫療在手機應用程式上會引發政府許可、資料利用、隱私等問題。因此,政策與產業如何協作,使用相關科技、限制濫用並控制技術中風險等,是面對是類新興科技應積極考量的方向。
本文為「經濟部產業技術司科技專案成果」
據調查,英飛凌(Infineon)、飛利浦(Philips)、三星電子(Samsung)及瑞薩電子(在當時為日立與三菱之合資公司) (Renesas,Hitachi 及Mitsubishi)在2003年9月至2005年9月間,藉由雙邊接觸以串謀有關智慧卡晶片相關事項;歐盟執委會認為該些公司在歐洲經濟區內(EEA)有對於智慧卡晶片之聯合行為,違反歐盟反托拉斯法(Cartels)。執委會因此對其處罰138,048,000歐元。瑞薩電子因符合2006年之寬恕告知(2006 Leniency Notice)而向執委會揭發智慧卡晶片之聯合行為,故免除罰鍰,三星因配合調查而減免30%之罰鍰。 該些進行聯合行為之公司係藉由雙方接觸來往決定個別回應顧客要求降價之方式。他們討論並交換機密之商業資訊,包含價錢、客戶、契約協商、產能或產能利用率及未來之市場行為。該行為違反了禁止聯合行為和限制商業活動之歐盟運作條約(TFEU)第101條及歐盟經濟區協定第53條。 負責競爭政策之執委會副主席Joaquín Almunia說: 在這個數位時代,不管是在手機、信用卡或護照裡,幾乎每個人都在使用智慧卡晶片。製造商應藉由創新及以最佳的價格提供最好產品之方式,致力於勝過競爭對手。若製造商不這麼作,反而選擇串謀,而造成消費者利益的損失,應受到制裁。 最初,執委會希冀藉由2008年調解通告(2008 Settlement Notice)而尋求與部分公司和解之可能性。然而,基於調解協商之進展緩慢,執委會遂於2012年決定停止調解而回歸至正常程序。
OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。
聯合國教科文組織發布《人工智慧倫理建議書》草案聯合國教科文組織於2020年9月發布《人工智慧倫理建議書》草案(First Draft Of The Recommendation On The Ethics Of Artificial Intelligence)(下稱建議書),以全球性的視野與觀點出發,為第一份全球性關於人工智慧倫理的建議書,試圖對人工智慧倫理作出框架性規定,對照其他區域性組織或個別國家人工智慧倫理準則或原則,著重之處稍有差異。該建議書係由組織總幹事Audrey Azoulay於2020年3月任命24位在人工智慧倫理學方面之跨領域專家,組成專家小組(AD HOC EXPERT GROUP, AHEG),以《建議書》的形式起草全球標準文書。 其主要內容提到六大價值觀:(一)人性尊嚴(Human dignity)、(二)基本人權和自由(Human rights and fundamental freedoms)、(三)不遺漏任何人(Leaving no one behind)、(四)和諧共生(Living in harmony)、(五)可信賴(Trustworthiness)、(六)環境保護(Protection of the Environment)。其中尤值關注處在於,建議書除強調人工智慧的技術、資料及研究需要進行全球範圍的共享外,相當重視世界上所有的國家及地區在人工智慧領域是否能均衡發展。特別在六大價值觀中提出「不遺漏任何人」觀點,也同時呼應了聯合國永續發展目標(Sustainable Development Goals, SDGs)的倡議。在人工智慧技術發展過程中,開發中國家(global south)及相對弱勢的群體是相當容易被忽略的。人工智慧蓬勃發展的時代,若某些群體或個體成為技術弱勢者,不僅在技術發展上有落差,更可能使人工智慧系統容易產生歧視、偏見、資訊和知識鴻溝,其後更將導致全球不平等問題的挑戰。 由專家小組起草的建議書草案已於2020年9月提交給聯合國成員國,作為對建議書的初步報告。該報告將提供給各會員國,並同步提交給預定於2021年召開的政府專家委員會,最後預計於2021年底的提交聯合國教科文組織大會。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。