FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。

  2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。

  根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

相關連結
你可能會想參加
※ FDA發佈人工智慧/機器學習行動計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8628&no=66&tp=1 (最後瀏覽日:2025/07/05)
引註此篇文章
你可能還會想看
日本學術會議建議因應疫情強化ICT建設和推動數位轉型

  日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。

歐盟提出能源安全政策,因應能源短缺及危機問題

  歐盟執委會(European Commission)在2014年5月28日提出源安全政策,此係歐洲針對各個會員國的能源依賴程度進行調查後所提出之政策。 歐洲多數國家對於能源需求有超過50%仰賴進口,且近來烏克蘭與俄羅斯政治紛爭引起許多的關注,尤其在天然氣使用部分,多半從俄羅斯透過管線運送方式進口,因此可能產生的能源短缺危機不容忽視。為此,歐盟再次針對能源使用的安全性問題提出政策方針。   政策訂定之目標可分為八項,分別為短期、中期及長期三個階段,每階段皆應採取具體執行措施,以因應能源安全問題: 強化能力,克服2014年及2015年冬天將面臨的能源短缺問題。 加強緊急應變措施,包括風險評估、偶發事件計畫以及維持既有的公共設施。 減緩能源的需求 建構具良好功能與全面整合的內部市場 增加歐盟地區的能源產出 進一步發展能源科技 使提供能源的來源國家以及相關公共設施多樣化 促進國家間能源政策的合作,並和外部交流。   其中,具體的措施包括執委會利用能源安全壓力測試(energy security stress test)模擬仿冬天天然氣供應短缺的問題,採用逆流(reverse flows)輸送、使用化石燃料替代能源、增加可提供出口能源的國家,不再侷限俄羅斯、阿爾及利亞、利比亞以及挪威國家等等。   此項政策後續的相關計畫內容已於6月26日及27日由歐盟由各國代表出席歐盟執委會會議討論,其是否能解決歐洲能源短缺問題,作為其他國家之參考借鏡,值得觀察。

英國政府提交予國會「人工智慧監管規範政策報告」

  英國政府由數位文化媒體與體育大臣(Secretary of State for Digital, Culture, Media and Sport)與商業能源與工業策略大臣(Secretary of State for Business, Energy and Industrial Strategy)代表,於2022年7月18日提交予國會一份「人工智慧監管規範政策報告」(AI Regulation Policy Paper)。內容除定義「人工智慧」(Artificial Intelligence)外,並說明未來政府建立監管框架的方針與內涵。   在定義方面,英國政府認為人工智慧依據具體領域、部門之技術跟案例有不同特徵。但在監管層面上,人工智慧產物則主要包含以下兩大「關鍵特徵」,造成現有法規可能不完全適用情形: (1)具有「適應性」,擅於以人類難以辨識的意圖或邏輯學習並歸納反饋,因此應對其學習方式與內容進行剖析,避免安全與隱私問題。 (2)具有「自主性」,擅於自動化複雜的認知任務,在動態的狀況下持續判斷並決策,因此應對其決策的原理原則進行剖析,避免風險控制與責任分配問題。   在新監管框架的方針方面,英國政府期望所提出的監管框架依循下列方針: (1)針對技術應用的具體情況設計,允許監管機構根據其特定領域或部門制定和發展更詳細的人工智慧定義,藉以在維持監管目標確定與規範連貫性的同時,仍然能實現靈活性。 (2)主要針對具有真實、可識別與不可接受的風險水準的人工智慧應用進行規範,以避免範圍過大扼殺創新。 (3)制定具有連貫性的跨領域、跨部門原則,確保人工智慧生態系統簡單、清晰、可預測且穩定。 (4)要求監管機構考量更寬鬆的選擇,以指導和產業自願性措施為主。   在跨領域、跨部門原則方面,英國政府則建議所有針對人工智慧的監管遵循六個總體性原則,以保障規範連貫性與精簡程度。這六個原則是基於經濟合作暨發展組織(OECD)的相關原則,並證明了英國對此些原則的承諾: 1.確保人工智慧技術是以安全的方式使用 2.確保人工智慧是技術上安全的並按設計運行 3.確保人工智慧具有適當的透明性與可解釋性 4.闡述何謂公平及其實施內涵並將對公平的考量寫入人工智慧系統 5.規範人工智慧治理中法律主體的責任 6.釋明救濟途徑   除了「人工智慧監管政策說明」外,英國政府也發布了「人工智慧行動計畫」(AI Action Plan)文件,彙整了為推動英國「國家人工智慧策略」(National AI Strategy)而施行的相關行動。前述計畫中亦指出,今年底英國政府將發布人工智慧治理白皮書並辦理相關公聽會。

英國公共廣電服務將可收取轉播之著作授權金

  英國2017年數位經濟法(Digital Economy Act 2017)已於2017年4月27日經英國國會通過,該法第四章規範智慧財產權,其中第34條條文內容意旨係公共廣電服務(Public Service Broadcaster)對其經轉播之內容享有著作財產權,任何欲轉播公共廣電服務內容之有線電視平臺將不得無償轉播,應交付授權金。   在舊法之架構下,英國1988年著作、設計及專利法(Copyright, Design and Patents Act 1988)第73條免除有線電視平臺轉播公共廣電服務內容所生之著作權侵權之責任。舉例而言,維珍集團旗下的電視媒體(Virgin Media)若轉播英國獨立電視臺ITV之節目,因不涉著作權侵權,故毋庸給付授權金。該條之立法目的原係為扶持80年代後有線電視發展之政策目標,然現今因多頻道、衛星數位電視,甚至是網路平臺持續蓬勃發展,該條文已相對過時,故透過2017年數位經濟法將該條文刪除。   英國公共廣電服務業者如BBC、Channel 4和ITV近年來大力倡導並遊說此立法政策,強調大多數的英國原創節目都是由其產出,主張有線電視平臺應當給付合理的轉播授權金,始能支持公共廣電服務業者持續為英國民眾帶來高品質的節目內容。惟,考量部分公共廣電服務業者與有線電視平臺之關係,如維珍媒體是ITV之大股東,往後公共廣電服務是否能有足夠的議價能力收取到合理的授權金,抑或反而造成英國民眾須支出更多節目費用,值得關注。

TOP