美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。
新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。
明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。
日本經濟產業省於2022年2月4日公告修正「大學與研究機關敏感技術出口管理指引」(安全保障貿易に係る機微技術管理ガイダンス(大学・研究機関用))。該指引係依據外匯與外貿法(外国為替及び外国貿易法,下稱外為法)及其行政命令訂定,用以協助大學與研究機關,建立符合出口管制法規之內控制度,防止關鍵技術外流。 經產省於2021年11月18日公告修正外為法第55條之10第1項授權訂定之行政命令「出口人法遵標準省令」(輸出者等遵守基準を定める省令の一部を改正する省令),強化「視同出口」(みなし輸出)行為管制之要件明確性。經上述行政命令修正,日本居民位於外國政府支配下,或其行動係經外國政府與組織指示,而受到外國政府與組織強烈影響之情形,視同非日本居民,向其提供敏感技術需申請出口許可。本次指引修正即以此為基礎配合調整相關內容,重點如下: 針對如何認定是否該當「視同出口」要件,追加說明模擬事例與判斷方式,例如:日本大學教授同時在外國大學兼職,又取得敏感技術時,是否該當「視同出口」要件,應以契約判斷或要求該教授應主動申報。 大學與研究機構之出口管理程序:就教職員與學生是否會在「視同出口」要件下,被認定為非日本居民,建議應由大學或機構內之相關部門於其到職或入學時,掌握必要資訊;技術提供方在提供技術前,需先確認技術取得方是否屬於「視同出口」要件下之非日本居民等。 增訂敏感技術出口人之義務:若需向直接取得敏感技術以外之人,獲取判定「視同出口」要件該當性之必要資訊,應訂定程序依此進行判定;大學或研究機構衍生新創事業若有涉及敏感技術出口之業務,大學或機構方應進行相關指導。 遠距工作與線上會議相關:應留意透過線上會議「提供技術」之可能性;存在僱傭關係但未入境日本,經遠距工作提供勞務者,視為非日本居民;於日本境內線上參加海外研討會時提供受管制技術,視同向境外出口技術而須申請許可。
美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護 資訊工業策進會科技法律研究所 2024年12月10日 美國消費者金融保護局(Consumer Financial Protection Bureau, CFPB)於2024年10月22日發布最終規則以落實2010年《消費者金融保護法》(Consumer Financial Protection Act, CFPA)第1033條規定之個人金融資料權利[1],該規則即通常所稱之「開放銀行」(Open Banking)規則。 壹、事件摘要 本次CFPB頒布最終規則旨在賦予消費者對其個人金融資料更大的權利、隱私與安全性。透過開放消費者金融資料,消費者得更自由地更換金融服務提供者以尋求最佳交易,從而促進市場競爭,並激勵金融機構精進其產品與服務[2]。 貳、重點說明 最終規則要求資料提供者在消費者及授權第三方之請求下,提供消費者金融產品或服務相關資料,並應以消費者及授權第三方可使用之電子形式提供。最終規則亦制定標準,以促進資料標準化格式(standardized formats)之發展和使用,同時規範第三方近用消費者資料義務,包括對資料之蒐集、利用及保留限制。相關重點如下: 一、受規範機構主體 最終規則規範對象為資料提供者(data provider),包含銀行、信用合作社等存款機構(depository institution);發行信用卡、持有交易帳戶、發行用於近用帳戶設備或提供支付促進服務(payment facilitation service)等非存款機構[3]。值得注意者,最終規則將數位錢包(digital wallet)及支付應用程式(payment app)業者納入資料提供者範圍,亦即被廣泛使用的金融科技服務亦將受到開放銀行規範體系之約束。此外,資料提供者不得向消費者或第三方收取資料近用之費用。 二、受規範資料範圍 最終規則規範之資料範圍涵蓋:資料提供者控制或擁有之24個月內之歷史交易資訊、帳戶餘額、付款資訊、契約條款與條件、即將到期之帳單、以及基本帳戶驗證資訊(Basic account verification information)等[4],消費者得授權第三方近用此類資料。至於機密商業資訊、蒐集資料僅用於防止詐欺、洗錢,或為偵測或報告其他非法及潛在非法行為,又或基於其他法律要求保密之資訊,以及在正常業務過程中無法檢索之資料,則豁免最終規則之適用[5]。 三、消費者與開發者介面 根據最終規則,資料提供者須建立及維護兩個獨立的介面以利資料之近用,包含:消費者介面,例如提供消費者近用其資料之入口網站,以及授權第三方之開發者介面(developer interface),例如應用程式介面(Application Programming Interface, API),雖最終規則不要求使用任何特定技術,然仍要求資料提供者須以標準化機器可讀格式(Standardized and Machine-Readable Format)提供資料,介面功能要求須達每月最低99.5%之回應率(response rate)[6]。此類資訊須在每月最末日前揭露於資料提供者網站上。此外,介面之設計須遵守《美國金融服務業現代化法》(The Gramm-Leach-Bliley Act, GLBA)」及聯邦貿易委員會(Federal Trade Commission, FTC)之《消費者資訊保障標準》(Standards for Safeguarding Customer Information)等消費者資料保護法規義務[7]。 四、授權第三方之行為義務 授權第三方(authorized third party)為代表消費者向資料提供者請求近用資料,藉以提供消費者產品或服務者。為解決隱私與資料安全問題,該規則對尋求近用消費者資料之第三方提出數項要求[8],包含但不限於: (一)知情同意之取得 第三方須取得消費者明確知情同意(express informed consent),以便代表消費者近用資料。 (二)資料利用之限制 第三方須確保將其資料之蒐集、利用及保留限制在提供消費者所請求的產品或服務之合理必要範圍內。就此部分,精準廣告(targeted advertising)、交叉銷售(Cross-selling),以及銷售資料並非提供產品或服務之合理必要範圍。 (三)遵守聯邦法規 第三方須依GLBA第501條規定或FTC之《消費者資訊保障標準》確保在其系統中採用「資訊安全計畫」(information security program)。 (四)政策與程序文件要求 第三方應擁有合理書面政策和程序,以確保從資料提供者處準確接收資料,並提供於其他第三方,即資料正確性之確保。 (五)資料撤回權之確保 第三方應向消費者提供撤回第三方授權之方法,撤回過程須簡易明瞭。在第三方收到消費者撤回授權之請求時,應通知資料提供者以及已向其提供消費者資料之其他第三方。 (六)第三方監督義務 第三方應透過契約要求其他第三方在向其提供消費者資料前遵守特定第三方法定義務。 (七)資料保存期限 消費者資料之保存期限最長為一年。若繼續蒐集,第三方應取得消費者重新授權。若消費者不提供重新授權或撤回授權,第三方應停止資料之蒐集,並停止利用與保留先前蒐集之資料。 五、實施日期 最終規則將依機構資產規模分階段實施[9],最大規模之機構(資產總額為2500億美元以上之存款機構資料提供者,以及在2023年或2024年任一年中,總收入達到100億美元以上之非存款機構資料提供者)須在2026年4月1日前遵守最終規則。對於規模最小之機構(資產總額低於15億美元但高於8.5億美元之存款機構資料提供者)須於2030年4月1日前遵守該規則。另總資產低於8.5億美元之存款機構不受該規則限制,以減輕小型銀行及信用合作社合規負擔。 參、事件評析 CFPB之CFPA第1033條最終規則將重塑美國金融市場之監理格局,由市場驅動之開放銀行框架走向由政府透過法規實質監理之管制措施,要求業者開放消費者資料。值得留意者,歐盟執委會(European Commission)2023年6月推出之「金融資料近用」(Financial Data Access, FiDA)草案[10]亦基於消費者賦權理念,強化消費者對其資料權利之控制權。由此可觀察國際間金融資料利用與監理規範逐漸走向以消費者資料自主為中心之法制架構,當代金融資料監理趨勢或值得我國主管機關及業者留意關注,除可作為我國金融資料法制與政策制定之參考,亦供我國企業布局全球化金融服務提前作好準備。 [1]Required Rulemaking on Personal Financial Data Rights, 89 Fed. Reg. 90838. [2]Consumer Financial Protection Bureau, CFPB Finalizes Personal Financial Data Rights Rule to Boost Competition, Protect Privacy, and Give Families More Choice in Financial Services, available at https://www.consumerfinance.gov/about-us/newsroom/cfpb-finalizes-personal-financial-data-rights-rule-to-boost-competition-protect-privacy-and-give-families-more-choice-in-financial-services/(last visited Dec. 5, 2024). [3]12 C.F.R. § 1033.111. [4]12 C.F.R. § 1033.211. [5]12 C.F.R. § 1033.221. [6]12 C.F.R. § 1033.311. [7]See id. [8]12 C.F.R. § 1033.421. [9]12 C.F.R. § 1033.121. [10]Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on a framework for Financial Data Access and amending Regulations (EU) No 1093/2010, (EU) No 1094/2010, (EU) No 1095/2010 and (EU) 2022/2554.
用數字解讀國內企業的智財管理能量 英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。