美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。
新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。
明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。
尹官石(Youn, Kwan-Suk)等11位韓國國會議員於2013年7月16日提出著作權法修正案,修法內容包括「導入著作權專門士及資格考試等制度」、「增訂著作權保護院設立之法源依據及相關業務規定」、「著作權保護院之審議委員會之組成」、「審議及發出糾正命令之主體變更為著作權保護院」。 韓國國會議員尹官石指出,雖然韓國著作權產業規模逐漸擴大,但據統計,著作權專業人才僅1萬3533位,專業人才明顯仍然不足。再者,著作權小規模訴訟也不斷增加。另外,現在雖有營運核發著作權相關資格證書業務之民間業者,但卻存在廣告誇大、課程內容不實,缺乏事後管理機制等問題,而造成市場混亂。為解決上述問題,韓國著作權法擬導入著作權專業人員之國家資格證照制度,希望藉以有效培育著作權專業人才,讓著作權產業得以健全發展。 另一方面,影視內容和電腦軟體為韓國著作權產業之核心,其所創造之附加價值及就業機會均呈現增加的趨勢,但相對來說,韓國音樂、電影、電視劇等內容常被非法重製,而這樣的非法重製行為造成3兆9758億韓圜之生產利益損失,減少3萬6千個就業機會。對此,為更有效推動著作權保護,並使著作權保護業務推動一元化,藉以促進文化內容產業發展,著作權法擬修法整併現有的著作權保護中心和韓國著作權委員會之功能,改設著作權保護院,以統合著作權保護業務。 在此一著作權法修正案之後,韓國文化體育觀光部及其它議員亦對其它著作權議題,如擴大著作權保護及合理使用範圍等,提出修正案,因此後續韓國著作權法的修法動態,值得持續關注。
歐洲資料保護監管機關研議提出「智慧電表系統發展準備建議」研究報告歐洲資料保護監管機關(European Data Protection Supervisor,以下簡稱EDPS)是一個獨立的監督機關,其任務主要在於監督歐盟個人資料的管理程序、提供影響隱私的政策及法制建議、與其他類似機關合作以確保資料的保護。 EDPS於今(2012)年6月8日,針對歐盟執委會於今(2012)年3月9日發布的「智慧電表系統發展準備建議」(Recommendation on preparations for the roll-out of smart metering systems,以下簡稱準備建議)提出相關意見。「智慧電表系統發展準備建議」乃係針對智慧電表部署之資料安全保護及經濟成本效益評估,提出發展準備建議,供會員國於進行相關建置及制定規範時之參考。然EDPS指出,執委會對於智慧電表中個人資料保護的重視雖值得肯定,但並未在準備建議中提供更具體、全面且實用的指導原則。智慧電表系統雖能帶來顯著的利益,但造成個人資料的大量蒐集,可能導致隱私的外洩,或相關數據遭使用於其他目的。 有鑑於相關風險,EDPS認為在準備建議中,應更加強其資料保護的安全措施,至少應包含對資料控制者在處理個人資料保護評估時有強制的要求;此外,是否有必要進行歐盟層級的立法行動亦應予以評估。EDPS提出的意見主要包括:(1)應提出更多有關選擇資料當事人及處理相關資料的法律依據,例如電表讀取的頻率、是否需取得資料當事人同意;(2)應強制「提升隱私保護技術」(privacy-enhancing technologies)的適用,以限縮資料的使用;(3)從資料保護的角度來釐清參與者的責任;(4)關於保存期間的相關原則,例如對於家戶詳細消費資訊的儲存期間、或在針對帳單處理的情形;(5)消費者能直接近取其能源使用數據,提供有效的方式使資料當事人知悉其資料的處理及揭露,提供有關遠端遙控開關之功能等訊息。
歐盟為清潔能源轉型提出再生能源指令修正提案2016年11月30日,歐盟執委會正式推出了清潔能源轉型(Clean Energy Transition)包裹立法提案。這項又名為「全歐洲人的清潔能源」(Clean Energy for All Europeans)包裹立法提案有三個主要目標,分別為「能源效率優先」(putting energy efficiency first)、「讓歐盟於再生能源取得全球領導地位」,以及「提供消費者公平合理的方案」(providing a fair deal for consumers)。而整個包裹措施的內容,除了再生能源指令(2009/28/EC)的修正案的提出外,並包含能源效率指令(2012/27/EU)以及建築物能源績效指令(2010/31/EU)的修正規劃。 在再生能源指令的修正草案方面,根據執委會的說明文件 ,此次的修正大致延續2015年所提出公眾諮詢的架構,分為六個面向,分別為:(1)於電力部門創造可以促成再生能源進一步佈署之架構(2)供冷供熱部門再生能源的主流化(3)運輸部門的減碳與多元化(4)對於消費者之賦權與資訊之提供(5)強化歐盟對於生質能源的永續性門檻(6)確保歐盟層級的具拘束力目標(binding target)能及時並以符合成本效率之方式達成。 在「於電力部門創造可以促成再生能源進一步佈署之架構」方面,執委會指出,依照目前規劃,2030年時歐洲將有一半的電力來自再生能源。而因應上述規劃願景,此次的修正草案融入會員國在設計支持再生能源機制時所應遵循的一般原則,亦即除了確保相關支持機制對於投資人具透明性與安定性,系爭機制亦須符合成本效益且為市場導向。 在「供冷供熱部門再生能源的主流化」部分,執委會首先說明,供冷供熱佔歐洲能源需求的50%,但此部分再生能源的使用仍然發展遲緩。此次修正規劃的主要重點則首先在於讓會員國有機會以供冷供熱部門為選項來增加其再生能源佔比,以2030年為目標,預計每年增加1%。並在特定條件下,開放再生能源發電業者對於區域型供冷供熱系統的近用權利。 我國政府近來為推動能源轉型政策,亦致力提高再生能源配比,並由行政院核定諸如「太陽光電2年推動計畫」等配套方案,近來並將修正再生能源發展條例;歐盟所提出相關規劃內容,或亦有值得我國參酌之處。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。