歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。
歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。
本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式:
一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。
二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。
三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。
AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。
為了提高市場競爭,Ofcom於2006年時允許BT集團將旗下網路接取部門獨立為Openreach公司。當時,英國政府希望透過市話迴路細分化(local loop unbundling),並讓所有寬頻網路提供者得以於無差別待遇取得銅絞線網路(copper phone network)批發價,減少不公平競爭產生。在BT分拆多年後,根據Ofcom今(2013)年的統計,原細分化出租之線路從過去的12萬3千條,提升至900萬條,較過去成長70倍。銅絞線批發價公開、合理,亦促使民眾享有比過往更低的資費與更多元的服務,使社會福利成長。 除此之外,市話迴路細分化不僅促進既有固網市場競爭,使消費者僅用一半的價格取得相同服務,亦間接加速業者投資意願,提高英國「高速寬頻」(superfast broadband,30M)的發展。目前,BT光纖建置速度每星期達10萬用戶可接取,輔以Ofcom2010年要求BT光纖基礎設施開放與虛擬細分化(virtual unbundling),使英國已有80家以上業者透過光纖提供網路,增加民眾選擇的權力。是故,在高速網路接取率逐步提高下,致使英國在2012年年底時,已有13%的家戶採用高速寬頻,其成長幅度亦是過往兩倍。 雖然,英國高速網路發展逐步進入軌道,但亦仍有發展之隱憂。首先,有別於銅絞傳輸寬頻網路市場競爭,民眾在選擇高速寬頻網路商時,多數僅願意採用BT與Virgin,造成市場競爭失衡。此外,BT取得政府非商業區光纖建設之多數補助,這是否會造成不競爭,仍後續觀察。最後,BT雖允諾開放其於業者租用光纖線路,但已有多家ISP業者申訴BT利用「價格擠壓」的方式,增加市場優勢。 英國為了在2015年能成為全歐洲寬頻發展最為優秀的國家,近期已宣布將重新檢視現有固網接取市場的管制架構,藉由兼顧市場競爭與基礎建設加速投資,促使網路能普及於英國。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。