美國科羅拉多州州長於2021年7月正式簽署《科羅拉多州隱私法》(Colorado Privacy Act, CPA)草案,科羅拉多州正式成為美國第三個制定全面性隱私專法的州,該法將於2023年7月1日施行。
隨著全球化及科技快速發展,以及大數據的應用趨勢,資料的蒐集、處理、利用規模及範圍逐漸擴大,全美各地隱私保護規範遍地開花,期待能促使企業在「保護個人資料」與「資料自由流通」及「資料商業運用」中取得平衡。 2018年美國加州首先制定《加州消費者隱私保護法》(California Consumer Privacy Act, CCPA)成為全美第一州級隱私保護專法後,包含華盛頓州、伊利諾州、紐約州等,也都提出各該州級隱私保護法案,而美國維吉尼亞州議會於今年2月通過《消費者資料保護法》(Consumer Data Protection Act, CDPA)法案,並在3月經由州長簽署,正式成為美國第二個擁有隱私保護專法的州,該法預計於2023年1月1日生效。
科羅拉多州於今年6月將CPA草案送交州長簽署後,於7月順利成為第三個通過隱私保護專法的州。一旦CPA生效,消費者除將享有近用權(right of access)、更正權(right of correct)、刪除權(right of delete)、資料可攜權(right of data portability)外;CPA規定在資料控制者對其消費者進行目標式廣告(targeted advertising)、銷售消費者個人資料,或者將對消費者決策產生重大影響時,消費者享有選擇退出權(right to opt out)。
整體而言,儘管 CPA 與CCPA及CDPA規範相似,在隱私保護規範上可能不是特別具有開創性,但CPA反映了美國各州強化隱私保護的趨勢與決心。舉例而言,去(2020)年不僅美國大選結果受矚目,美國各州隱私保護相關公投案,包含《加州第24號提案》、麻州《汽機車機械資料》、密西根州《電子資訊搜索票》及緬因州波特蘭市《臉部辨識禁令》也獲通過。美國在尚未具有統一聯邦隱私保護法下,透過州級隱私立法,保有各州特色並作為各州隱私保護執法依據。
歐盟科學與新科技倫理委員會(European Group on Ethics in Science and New Technologies, EGE)在今(2009)年11月18日公布合成生物學(Synthetic Biology)公布相關之倫理、法制與社會議題之意見,其中指出合成生物學具有可大幅降低生技藥品生產成本的極大潛力,但也可能帶來的風險,故應予注意。 對很多人來說,合成生物學是一個相當新穎的概念,經濟合作發展組織(Organisation for Economic Co-operation and Development , OECD)在其所公布的2030生物經濟發展議程中,將其列為最具有發展潛力的新興生物技術之一,近來更被歐美先進國家視為生物技術產業的未來重點發展方向。 根據OECD的定義,所謂合成生物學,是以工程方法為基礎,以改進微生物的新興領域,此技術使設計與建構新生物元件(part)、裝置(device)及系統(system),及對於既存的自然生物系統,使其更具有使用性。合成生物學的目的,在於藉由設計細胞系統,使其具備特定功能,從而消除浪費細胞能量之非期待的產物,以增進生物效率。目前合成生物學與市場較為接近的案例,乃一種將青蒿(sweet wormwood herb)、細菌與酵素等基因、分子路徑(molecular pathway)作結合,製造出可以生產治療瘧疾(malaria)的青蒿酸之細菌,此項開發成功突破過去僅能透過植物青蒿獲得,並產量有限的瓶頸。 正由於看好和成生物學的發展潛力,美國、英國與歐盟都開始對此項技術可能帶來的倫理、法制與社會爭議進行評估,歐盟EGE更公布意見以作為未來訂定法規範時的參考。EGE在意見中表示合成生物學使用於能源技術、生物製藥、化學工業或材料科學等都深具前景,故建議歐盟執委會應對此技術發展給予支持,並在歐盟架構計畫下,以產業利用為前提,給予經費的支持;然也必須重視其ELSI問題,包括使用合成生物產品的安全性、對環境的長期影響、惡意使用之防免、專利與公共財的爭議等,為了解決此等問題,其也要求各會員國必須針對合成生物學的各種議題,加強與民眾、利害關係人及社會的對話。由於我國一直將生技產業視為發展重點,合成生物學關係著生技產業未來發展,其未來發展實不容為我國所忽略。
美國CVAA義務豁免之案例介紹與分析 歐洲食品安全局頒佈利益申報實施細則為了有效管理歐洲食品安全局(European Food Safety Authority, EFSA)內部各項活動間之利益管控與監督,EFSA日前於3月5日公布利益申報(Declarations of Interest, DOIs)施行規則(Implementing Rules),並計畫於2012年7月1日正式實施,且同時搭配一個為期4個月的過渡(Transition Period)配套措施方案。該利益申報施行規則,乃為EFSA於今年初所核准之「獨立性與科學決策過程」(Independence and Scientific Decision-Making Processes)政策的基礎規範項目之一。 本次EFSA所頒布之利益申報施行規則,其訂定之理由係因,原任職於EFSA旗下基因工程植物之首席風險評估專家,轉任至一家專門研發及生產該種植物之生物科技公司;為避免並且釐清相關因該事件所衍生之利益衝突問題,乃制定本規範。故此,為具體有效管理EFSA內部人員與其他涉及EFSA各項活動之機構間的利益監督事宜,EFSA遂進一步於今年初開始著手進行相關措施之規劃。目前該利益申報施行規則除了主要針對EFSA旗下之各層級人員訂定各項利益類型之規範準則外,更重要的是,其亦提供其旗下之專業科學研究人員,各項能有效具體確認其利益界線之劃分的保護措施。由於該利益申報施行規則授與EFSA選取與管理利益申報議題若干彈性,因此EFSA能具體且有效的利用相關規範延攬頂尖研究人員,進而協助EFSA提升其內部研發人員之創新研發能力。 政府機關成員之利益申報與迴避問題,乃為全球各國政府需面對之問題,而對於如何有效且彈性的進行相關議題之管控,更是相關政策制訂時需加以考量之點。EFSA之利益申報施行規則不僅有效管理內部人員之利益衝突與申報問題,同時亦藉由彈性的管理規範方式,延攬優秀頂尖人才,達到具體提升研發水準之功效;對此,EFSA之規範方式與運作成效,實值得加以觀察與效仿。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。