由於近日頻傳醫院遭受勒索軟體攻擊(ransomware attacks),美國加州檢察總長於2021年8月24日發布官方公告(bulletin):在加州州法「醫療資訊保密法」(Confidentiality of Medical Information Act, CMIA)與聯邦法「健康保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)規範下,蒐集、處理和利用醫療健康資料的醫療照護機構,有採取適當措施與事故通報的義務,以維護醫療健康資料保密性。
針對「採取適當措施」的內容,美國加州檢察總長於本次官方公告中,提出明確指引(guidance):醫療照護機構須至少採取下列5項防範措施(preventive measures),以避免勒索軟體威脅:
此外,針對「資料外洩事故通報義務」(breach notification obligations),美國加州檢察總長指出:依據「加州民法」(California Civil Code)第1798.82條,擁有或經授權使用含有個人資料的「電腦化資料」(computerized data)的醫療照護機構,於發生,或可合理確信發生,影響超過500位加州居民的資料外洩事故時,即負有將該事故通報檢察總長辦公室的義務。
2010年11月26日,日本組成臨時國會,在眾議院不到3小時、參議院不到1小時的審查速度,完成「放送法」修正案(連帶小修「電波法」與「電信業法」(電気通信事業法))。新法於同年12月3日公佈,並於2011年6月30日施行。 日本此次修法,在概念上並未法規匯流,而係將「有線電視放送法」、「電信役務利用放送法」與「有線廣播放送法」整併進「放送法」;概念類似我國主管機關為新聞局時代的「廣電三法整併草案」。細部修正重點如下: 1、「放送」定義由「以供公眾直接收訊為目的之無線傳訊」,修正為「以供公眾直接收訊為目的之電子傳訊」。將網際網路傳輸之方式納入定義中。 2、將「有線電視放送」等舊有定義廢除,新區分「基幹放送」與「一般放送」兩種類。所謂基幹放送,係指依電波法之規定放送之無線電台,使用被指配之專用頻段、或優先使用頻段而為之放送;所謂一般放送,則係指基幹放送以外之放送。 3、廢除舊法中的「委託、受託放送制度」,導入「軟體硬體分離」之概念。 4、總體而言,新法明顯強化了內容管制。除了上述總務大臣之權限外,新法中亦新增電視事業之節目種類公表義務、並強化了放送事故等技術問題的對應規範。
日本監理沙盒制度推動趨勢—簡介生產性向上特別措施法草案與產業競爭力強化法修法內容我國自2017年12月通過《金融科技發展與創新實驗條例》建立金融監理沙盒制度後,各界時有呼籲其他非金融領域亦有沙盒制度之需要。觀察國際上目前於金融產業以外採取類似沙盒制度之國家,當以日本為代表,且日本相關制度亦為我國《中小企業發展條例》修法時之參考對象。 本文針對日本近期提出之《生產性向上特別措施法》(草案)以及日本《產業競爭力強化法》新近之修法等兩項日本近來有關沙盒制度之修法為觀察對象,針對其整體立(修)法背景、《產業競爭力強化法》中灰色地帶解消制度及企業實證特例制度修正重點以及《生產性向上特別措施法》(草案)中「專案型沙盒」之制度內涵進行整理,並比較企業實證特例制度及專案刑沙盒兩者制度上之異同。 本文最後發現,日本之沙盒制度設計上確實符合其減少事前管制、強調事後確認與評估、建立風險控管制度、課與主管機關提供資訊與建議之義務以及強化業者與主管機關聯繫等目標。同時,本文認為日本沙盒制度中有兩項制度特色值得我國關注及參考。第一,日本成立了包含外部專家的「評價委員會」,協助政府單位了解創新事業之內容及法規制度之觀察。第二,日本未來將提高實證制度之協調層級,在日本內閣府下設立單一窗口協助申請者決定其可適用之實證制度。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
促進智慧電網之發展—德國提出智慧電網佈建期程