日本公平交易委員會公布資料市場競爭政策檢討會報告書,提出建構資料市場公平競爭環境之政策建議

  日本公平交易委員會(公正取引委員会)於2021年6月25日發布關於資料市場競爭政策檢討會(データ市場に係る競争政策に関する検討会)報告書。所謂資料市場,不僅指資料從產出、蒐集、整理儲存(蓄積)、加工、分析到利用等各階段的交易,尚包含向終端使用者提供相關商品或服務。其類型包含企業經營所產出的「產業資料」(産業データ),以及與個人相關的「個人資料」(personal data,原文為パーソナルデータ)。近年來,數位平台型業者參與資料市場、活用資料經營相關商業活動的情形漸增。同時,資料不同於傳統交易客體,具備以下特徵:(1)技術上容易複製;(2)無法建立排他性佔有;(3)需透過累積與解析方能創造其價值;(4)可藉由累積使用資料持續優化產品機能。而累積大量資料的數位平台業者,亦可能藉此形成獨占、寡占、排除其他競爭者等。

  基此,本報告書針對此一競爭秩序現況,提出以下建議:

  1. 建構鼓勵新業者加入資料市場的機制:應充分考量各潛在參與者之需求,同時留意利用資料之事業退出市場經營時,不應對使用該事業服務的個人造成不利益。
  2. 針對產出資料之行為建立獎勵機制,同時促進業界自由且易於取用資料。
  3. 區分各企業經營共通事項之協調領域、以及企業間各自專業化經營之競爭領域。就前者提供共通性指引與開放行政保有資料供利用,對後者則須管制妨害公平競爭之行為。
  4. 確保資料可攜性,與不同系統間的互通性(interoperability,原文為インターオペラビリティ),讓使用者容易轉換其所利用的平台服務。
  5. 優化關於個資利用的說明義務內容,尤其針對平台在不知情下蒐集資料的情形,應額外規範業者採取相應配套措施,避免造成當事人不利益。
  6. 就數位平台形成的市場寡占與資料獨占蒐集問題,可考量採取令其他業者能公平取用資料之措施。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 日本公平交易委員會公布資料市場競爭政策檢討會報告書,提出建構資料市場公平競爭環境之政策建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8743&no=57&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
韓國「2021年經濟政策」

  韓國財政經濟部(Ministry of Economy and Finance)於2020年12月17日發布「2021年經濟政策」(2021 Economic Policies)。2021年經濟政策中包含兩大重點,分別為因應新型冠狀病毒影響下的不確定性,盡快恢復經濟成長動能,以及推動產業創新與結構轉型,以培植未來的經濟成長動力。政策文件中指出,儘管2020年經濟成長率因疫情影響而表現低迷,但仍期許2021年經濟能夠盡快好轉,改善投資、出口與國內就業。   針對如何盡快恢復經濟成長動能議題,政策文件指出首先應處理因疫情帶來的不確定性,除了維持擴張性財政政策,以增加政府支出刺激總體需求外,在經濟成長與疫情防治間應取得平衡並加強風險管理;其次為透過租稅減免促進消費、擴大投資額度與提供出口融資,以及提供資金以扶植中小企業、提供優惠貸款協助大型企業度過疫情難關、鬆綁法規以發展地方經濟等一連串措施,來達到恢復經濟成長動能的目標。   而在推動產業創新與結構轉型上,將持續投資於5G應用與6G技術的發展上,推動數位經濟與數位政府系統建構,具體措施包含減免投資5G應用貸款稅率2%、籌集投資數位新政基金、完善智慧醫療應用等。此外在扶植新創政策上,則包含建立新興科技實驗場域(K-test bed),以政府採購扶植新興科技、提供商機以及協助銜接海外市場,修正創投法規開放附認股權憑證之低利貸款以引進矽谷創投資金,以及排除可轉換可贖回之債務認定以降低政府研發補助申請門檻等,以有效扶植創新能量成為未來的經濟成長動力。

日本簽署SBOM國際共通指引,強化軟體弱點管理,全面提升國家網路安全

由美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency, 簡稱CISA)自2024年以來,持續主導並規劃《SBOM網路安全之共同願景》(A Shared Vision of Software Bill of Materials(SBOM) for Cybersecurity)之指引訂定,作為保障網路安全之國際共通指引。於2025年9月3日,由日本內閣官房網路安全統括室為首,偕同經濟產業省共同代表日本簽署了該份指引,包含日本在內,尚有美國、德國、法國、義大利、荷蘭、加拿大、澳洲、紐西蘭、印度、新加坡、韓國、波蘭、捷克、斯洛伐克等共計15個國家的網路安全部門,皆同步完成簽署。以下為指引之重點內容: 1. 軟體物料清單的定位(Software Bill of Materials, 簡稱SBOM) SBOM於軟體建構上,包含元件內容資訊與供應鏈關係等相關資訊的正式紀錄。 2. 導入SBOM的優點 (1) 提升管理軟體弱點之效率。 (2) 協助供應鏈風險管理(提供選用安全的軟體,提升供應商與使用者之間溝通效率)。 (3) 協助改善軟體開發之進程。 (4) 提升管理授權軟體之效率。 3. SBOM對於利害關係人之影響 (1) 使軟體開發人員可選擇最符合需求的軟體元件,並針對弱點做出適當處置。 (2) 軟體資訊的透明化,可供採購人員依風險評估決定是否採購。 (3) 若發現軟體有新的弱點,使軟體營運商更易於特定軟體與掌握弱點、漏洞。 (4) 使政府部門於採購流程中,發現與因應影響國家安全的潛在風險。 4. SBOM適用原則與相關告知義務 確保軟體開發商、製造商供應鏈的資訊透明,適用符合安全性設計(Security by Design)之資安要求,以及須承擔SBOM相關告知義務。 近年來軟體物料清單(SBOM),已逐漸成為軟體開發人員與使用者,於管理軟體弱點上的最佳解決方案。然而,針對SBOM的作法與要求程度,各先進國家大不相同,因此透過國際共通指引的簽署,各國對於SBOM的要求與效益終於有了新的共識。指引內容不僅建議軟體開發商、製造商宜於設計階段採用安全設計,以確保所有類型的資通訊產品(特別是軟體)之使用安全,也鼓勵製造商為每項軟體產品建立SBOM並進行管理,包含軟體版本控制與資料更新,指引更強調SBOM必須整合組織現有的開發與管理工具(例如漏洞管理工具、資產管理工具等)以發揮價值。此份指引可作為我國未來之參考借鏡,訂定相關的軟體物料清單之適用標準,提升政府部門以及產業供應鏈之網路安全。

美國專利商標局更新專利標的適格性暫行準則

  2015年7月30日美國專利商標局大幅更新其於2014年12月所公布的專利標的適格性(patent subject matter eligibility)暫行準則。這次的更新主要是將各界對於2014年12月版暫行準則的意見納入,並包括了幾項新的適格性與不具適格性申請專利範圍的舉例。儘管有評論指出,美國專利商標局也正研議針對生物技術舉例,但此次所舉之例主要針對抽象概念而非生物技術發明。   這些舉例係對各種技術提供其他適格的申請專利範圍,以及適用最高法院與聯邦巡迴法院判斷具有其他元件的申請專利範圍是否與法定不予專利標的顯著不同的示例分析。這些例子與在審查人員的教育訓練資料中所載的判例法之判決先例,都將用於協助審查人員在評估申請專利範圍元件(claim element)的專利適格性上能夠彼此一致。   在更新的暫行準則的第三部份中,美國專利商標局為認定抽象概念提供了進一步資訊,其係有關最高法院及聯邦巡迴上訴法院對於抽象概念適格性判定的司法見解,包括人類活動的特定方法、基本經濟行為、概念本身及數學關係式/公式。   在更新的暫行準則的第五部分中,美國專利商標局解釋說,適格性的初步證據要求審查人員明確清楚地解釋為什麼無法對所提出的專利申請專利範圍授予專利(unpatentable),以便專利申請人獲得足夠的通知並可以有效地作出回應。   對於專利適格性,審查人有義務清楚地闡明所提出的專利申請不具有適格性的理由或原因,例如藉由提供判定申請專利範圍中所敘述的法定不予專利(judicial exception)與為什麼它被認定為例外的理由,以及在申請專利範圍中識別其他元件(additional element)的理由(若有的話),及解釋為何未與法定不予專利標的顯著不同。這裡由可以依據在該技術領域之人一般可得之知識、判例法之先例、申請人所揭露之資訊或證據。   美國專利商標辦公室表示,本次暫行準則歡迎各界給予意見,並至2015年10月28日止。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP