美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意:
上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。
GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。
美國佛羅里達州一名商人日常透過網路管理其帳戶資金出入,其資金主要是在美國與中南美洲間流動。該名商人發現其銀行帳戶有異常的資金流向拉脫維亞而向警方報案,經調查發現他的電腦被植入名為Coreflood的特洛伊木馬程式,致其銀行帳戶存取密碼被盜用。該名商人認為銀行明知網路上有此種危險而怠於告知客戶,且銀行明知拉脫維亞以網路犯罪猖獗而著稱,對於其帳戶內大筆的異常資金流出亦疏於防範,爰對銀行提起訴訟。據信,本案為銀行儲戶因受網路詐欺而控告其銀行的首例。
資通安全法律案例宣導彙編 第4輯 歐盟智慧財產服務台提供中小企業「掌握智慧財產權五步驟」的建議,以助其最大化IP價值歐盟智慧財產服務台(European IP Helpdesk)於2023年7月10日提供中小企業「掌握智慧財產權五步驟」的建議,以協助中小企業最大化IP價值。五步驟如下: (1)盤點企業擁有的IP數量及排定優先順位:企業應盤點其擁有的專利、商標、設計、著作權、營業秘密等的數量,並根據IP對企業成功的重要性進行排序。 (2)進行IP查核:企業應就其所擁有的智慧財產組合(IP Portfolio)進行詳盡的檢視,以評估其優、劣勢;企業應辨別出目前其智慧財產組合所可能遭受危險的地方,並評估其目前擁有的智慧財產組合,若其中有改以其他IP保護者,則風險可能為何。 (3)制定IP保護計畫:根據上述(2)的查核結果,企業應發展出一套IP保護政策,此並應包含「可監控及執行其IP,藉以排除他人侵權行為」的情形。同時,企業也應檢視自己的IP有無侵犯到他人的權益,例如透過「自由運營分析」(Freedom-to-Operate analysis)的方式,來進行專利侵權風險排查。 (4)將保護計畫付諸行動:企業應執行上述計畫,並確保其員工係對此等政策及措施有所認知。除此之外,亦應對員工施以教育訓練,以使其知道「IP保護的重要性」及「辨別潛在侵權行為的最佳方法」。 (5)保護計畫之檢視及更新:企業應時時檢視其IP保護計畫及進行更新,以確保其整體IP策略係與企業發展目標一致。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」