美國眾議院(United States House of Representatives)於2021年10月20日通過安全設備法案(Secure Equipment Act)、通訊安全諮詢法案(Communications Security Advisory Act)、資通訊科技戰略法案(Information and Communication Technology Strategy Act)與國土安全部軟體供應鏈風險管理法案(DHS Software Supply Chain Risk Management Act),以提高網路之可信任度、防止採用構成國家安全風險的設備、支持小型通訊網路供應商,並促進產業供應鏈的經濟競爭力。美國總統拜登(Joseph Robinette Biden Jr.)於同年11月11日完成簽署《安全設備法》。
《安全設備法》旨在禁止聯邦通訊委員會(Federal Communications Commission, FCC)頒發設備許可予構成美國國家安全風險之公司,其目的係為防止美國的網路系統遭受中國大陸設備的監控,保護美國公民的隱私與安全。近年來,美國以國家安全與技術、隱私保護為由,逐步以政府禁令或動用政府影響力,防堵華為、中興等其認為與中國政府關係密切之中國通訊設備業者。自2019年5月15日美國白宮頒布之第13873號行政命令,至2021年10月20日美國眾議院通過電信設施基礎安全四大法案,並美國商務部於隔日即發布「禁止出售、出口駭客監視工具予曾有侵犯人權紀錄的專制政府及地緣政治之敵人」等規定,各種限制手段展現美國保護國土安全之決心。
此外,《通訊安全諮詢法案》、《資通訊科技戰略法案》與《國土安全部軟體供應鏈風險管理法案》分別就通訊網路的安全性、可靠性與操作性;資通訊技術供應鏈報告(例如:定義何謂「對美國經濟競爭力至關重要的資通訊技術」等)」;以及資通訊技術或服務合約之指導方針如何改善國家網路安全等相關事項予以規範。目前,此三大法案皆於參議院二讀後提交至委員會,後續發展應密切關注。
本文為「經濟部產業技術司科技專案成果」
根據Ponemon Institute的調查,2011年至2012年中,英國企業資料侵害事故平均成本增加了15%。賽門鐵克指出,若企業備有正式的事故應變計畫,每項資料侵害事故的平均成本會降低至13英磅左右。除此之外,雇用外部顧問來協助應變,資料侵害事故的平均成本也會節省4英磅。 依據新的資料保護法律架構,歐盟委員會日前已開始擬訂新的資料侵害事故通知制度。同時,根據不同委員會的需求,未來將針對特定產業,制定新的網路與資訊安全管理規範。 專家評估未來責任保險將成為確保資訊安全的新潮流。企業藉由事先擬定事故應變計劃來降低資料侵害的風險,同時也進行風險轉移的處置措施。各項事故應變計劃之中,保險制度是企業目前較感興趣的措施之一。保險制度除了可用於風險轉移之外,企業還可以從中取得資料侵害事故的專家網絡。這些專家包含事故鑑定專家、公共關係專家、風險管理專家,信用監測提供者或是資料侵害事故的事務處理公司,例如:協助發送事故通知的公司。保險業建置的專家網絡,未來將可以幫助要保人,以最快最省成本的方式處理相關事故。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
行動通信事業提供視訊服務之法律議題研究 美國有限合夥發展於我國之借鏡