國際海事組織海事安全委員會決議於2025年前制定非強制性自駕船國際章程

  國際海事組織(International Maritime Organization,下稱IMO)於2022年4月20日至29日於線上召開為期9天的海事安全委員會(Maritime Safety Committee,下稱MSC)第105屆例會,會議重點係咸稱之自駕船——亦即海上自動化水面船舶(Maritime Autonomous Surface Ship,下稱MASS)之航行與操作規則。本屆會議總結並延續了MSC近年針對MASS的工作,包括2018年提出MASS實驗框架規範,以及2021年提出MASS法制框架評估等。本屆會議除了賡續規劃MASS的法制路線圖(Roadmap)外,鑒於船舶相關智慧科技快速發展,MSC決議於2025年之前,針對各級MASS制定非強制性(voluntary)之章程及規定後,蒐集各國的實務經驗與意見,再於2027年將其轉為強制性(mandatory)的規定,以於2028年生效並適用於IMO全體會員國。

  部分會員國(例如日本)從造船技術出發,建議未來的MASS指南與規範內容應全面覆蓋船舶的設計、建造、系統、設備的功能要求。挪威則建議應按第103屆會議所盤點之法規,優先處理「人員」相關議題,包括船員、船長及遠端操作員的資格,以及當值與行為準則等。韓國則建議,即便是等級最高的全自駕船,亦不可能全面取代人為操作,因此MASS的法制應以「人機協同」為基礎,方能合乎SOLAS公約與IMO促進海上航行安全的目的及宗旨。最後,各國亦擬議將MASS規範優先適用於「貨船」,而非「客船」。本屆會議顯示IMO已加快MASS法制工作的進程並規劃具體之立法期程,我國除了在《無人載具科技創新實驗條例》建立的監理沙盒下已有兩件自駕船實驗案,未來勢必需要對接國際海事規範,航政機關實須提前因應及規劃。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 國際海事組織海事安全委員會決議於2025年前制定非強制性自駕船國際章程, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8834&no=57&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
科法觀點
你可能還會想看
泰國智慧財產制度在2017年國際智財指數中得分排名靠後

  由美國商會(the United States Chamber of Commerce)於2007年成立的全球智慧財產中心(Global Intellectual Property Center,以下簡稱GIPC)發布2017年國際智慧財產指數排名,前三名分別為美國、英國和德國,而泰國在45個經濟體中排名第40名,在滿分35分的評分中僅得到9.35分。指數的計算方式係基於專利、著作權、商標、營業秘密、執法、國際條約的批准和執行狀況等6個智財保護面向,共35個指標組成。   GIPC指出,泰國關鍵優勢在於具備商標、著作權和設計專利的基本註冊和保護制度,具備智財權執行的基本法律架構,配合新技術的發展試圖調整著作權的法規,改進部份海關防止仿冒的措施。而得分低的主要原因則為專利保護不足、數位著作權制度不完整、智財資產商業化的繁鎖程序和額外成本、仿冒猖獗和執法不力等。   泰國智慧財產局(the Department of Intellectual Property,以下簡稱DIP)局長表示美國商會未充分考慮泰國在智慧財產權發展方面的努力。泰國是按與貿易有關之智慧財產權協定(Agreement on Trade-Related Aspects of Intellectual Property Rights,以下簡稱TRIPS)的要求提供智財保護,然GIPC的部份指標較TRIPS的要求嚴格,導致泰國得分偏低;且指標評估者僅為美國商界人士,而非所有利害相關人。不過DIP也表示,儘管在推動泰國智慧財產權保護方面存在諸多困難,同時需要與包括衛生部、海關廳、財政部、國家警察總署、特安廳以及數位經濟和社會部等部門合作開展,DIP仍將繼續推動各項工作進展,努力提高泰國在國際智財指數的排名。 【本文同步刊登於TIPS網站(http://www.tips.org.tw)】

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

Ofcom宣佈將為身障者提供更為便利的電話服務

  英國電信管制機關Ofcom宣布,所有固網與行動電話業者將必須提供更為先進便利的「文字中繼服務(Text Relay Service)給所有聽力或語言障礙的民眾使用。文字中繼服務使聽力或語言障礙民眾能透過電話或文字電話(TextPhone)等設備而能與他人溝通,這項決定意味著所有的手機用戶將有機會獲得一個「下一代(next generation)」文字中繼服務,各種設備將能夠輔助身障者以更快、更流暢的交談速度與他人溝通。   Ofcom在經過文字中繼服務的審查研究後發現,目前的中繼系統以助理作為通話雙方的中介,進行語音與文字的轉換,反之亦然。然而研究發現,通話者對於對話速度的即時性與情感表達的完整性有提昇的需求,現在的系統通話的速度很慢,因為呼叫者只能輪流說話或輸入文字,無法即時快速如正常人一般的溝通。   因此Ofcom決定下一代文字中繼服務,在未來的18個月內將提供顯著的改進,包括:   語音雙向並行傳輸,透過網際網路的連接,允許通訊雙方可隨時插嘴,而無須等到一方的對話結束傳輸。如此將使交談雙方對話流動更快,有更自然的結果,新的服務也將支援更多種類的設備。為了達成這些改進,Ofcom將與產業、身障團體代表進行合作,探討當前和未來中繼服務所需語音辨識技術的精確度和速度的發展。Ofcom也將要求電信業者在未來提供視訊中繼服務,以確保身障者可以使用可靠的、先進的各種中繼服務,以幫助他們更容易溝通。

美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

TOP