歐盟執委會(European Commission, EC)於2022年4月13日提出欲修正歐盟「地理標示」(Geographical Indication, GI)制度之提案(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on geographical indication protection for craft and industrial products and amending Regulations (EU) 2017/1001 and (EU) 2019/1753 of the European Parliament and of the Council and Council Decision (EU) 2019/1754,下稱本提案),擬在歐盟GI制度原僅保護農產品、食品及葡萄酒、蒸餾酒產品外,新增對於工藝品和工業產品之保護。
所謂工藝品和工業產品如義大利的穆拉諾玻璃(Murano glass)、愛爾蘭的多尼戈爾花呢(Donegal tweed)和波蘭陶(Boleslawiec pottery)等,皆係源於特定地區,產品品質和相關特色皆係依於原產地技藝之原創性及傳統作法。儘管此等產品在歐洲或全世界享有不錯聲譽,其製作者一直以來卻未能享有歐盟層級GI的保護,以更可將其原產地名與聲譽、品質相連結。
本提案將使消費者更易於辨識該等產品之品質,以可在更得知產品資訊的狀況下,作出消費選擇;亦可宣傳各原產地的技術工藝,使當地技藝被保存,並創造工作機會,達到經濟成長。
本提案主要包含:
(1)將工藝品和工業產品納入歐盟GI保護:
將為工藝品和工業產品建立一個橫跨全歐盟的GI保護,而非僅目前部分區域或國家所有者,以更保障製作者之智慧財產權。本提案亦將促進打擊仿冒品的行為,包含在網路上所銷售者。
(2)為工藝品和工業產品的GI制度建立經濟的註冊程序:
將建立「兩階段申請程序」,製作者先向其所屬歐盟會員國當局提出申請,再由該當局轉交符合第一階段資格者之資料至歐盟智慧財產局(European Union Intellectual Property Office, EUIPO),以進行評核。
本提案將可使製作者提出「其產品有符合原產地製作特點」的聲明,以使整體註冊程序較簡易且節省成本。
(3)與國際上其它GI保護制度相容:
本提案將使成功取得歐盟GI註冊之工藝品和工業產品製作者可在「關於保護原產地名及GI的日內瓦協定」(Geneva Act on Appellations of Origin and Geographical Indications under the World Intellectual Property Organisation (WIPO))之簽署國實施和保護其產品的權益;蓋此協定亦有包括工藝品和工業產品。而由於歐盟於2019年簽署該協定,故在歐盟境內亦將保護他簽署國工藝品和工業產品之GI。
(4)保存原產地技藝,並造就歐洲鄉村和其他地區的發展:
藉由提供製作者(尤其是中小企業)誘因,以投資於新的原創產品及創造其他利基市場(niche markets)。本提案並將使歐洲若干地區(尤其是鄉村及較低度開發區域)將失傳的技藝得以被保存,因此將可重振其知名度以吸引遊客或創造其他工作機會,達到經濟復甦。
本文為「經濟部產業技術司科技專案成果」
歐盟普通法院(EU General Court)於2024年6月5日宣告McDonald’s(後稱麥當勞)在與競爭對手愛爾蘭速食品牌Supermac's的訴訟中,失去其「Big Mac」(又稱「大麥克」)之部分商標權,即無法將「Big Mac」商標用於雞肉三明治等家禽類商品與餐廳內用及得來速外帶等餐飲服務上。 此案件起因於Supermac's公司拓展事業版圖進入歐盟市場,將公司品牌名稱「Supermac's」申請註冊歐盟商標,而麥當勞則主張消費者可能與其於1996年取得之「Big Mac」歐盟商標產生混淆誤認。然而,Supermac's於2017年向歐盟智慧財產局(European Union Intellectual Property Office,後稱EUIPO)以「麥當勞未真實使用(genuine use)『Big Mac』商標逾五年」為由,申請廢止麥當勞之「Big Mac」註冊商標。EUIPO於2019年廢止「Big Mac」商標於部分類別的註冊,惟EUIPO仍允許麥當勞仍可將「Big Mac」商標用於雞肉三明治、其他家禽產品及餐廳服務上。 爾後,Supermac's向歐盟普通法院提出上訴,而歐盟普通法院於2024年6月認為,麥當勞未能證明其於連續五年間有將「Big Mac」商標「真實使用」於雞肉三明治、家禽商品或餐廳服務的使用程度(例如:銷售量、商標使用期間長短及使用頻率等),故認定麥當勞不得再將「Big Mac」商標用於雞肉三明治、家禽商品或餐廳、得來速或外帶等服務上,惟本案尚未確定,而可再就法律問題上訴,故仍可持續關注本案的後續發展。 企業可從本案了解到當品牌標識成功註冊為商標後,務必留意各國所規範之連續使用年限(例如若連續五年未使用歐盟商標,則可能有被商標廢止之風險),以及明確留存足以佐證「真實使用」於註冊所指定之類別與品項之使用證明,以維護品牌商標之保護。
何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。 ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型: 1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。 2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。 3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。
歐盟執委會發布《歐盟晶片調查報告》提出四點發現以利未來晶片法相關計畫制定歐盟執委會(European Commission)於2022年8月2日發布《歐盟晶片調查報告》(European Chips Survey Report,下稱調查報告),調查結果顯示業界至2030年為止,對晶片之需求將倍數成長。調查報告於2022年2月啟動,其目的在收集有關晶片和晶圓(wafer)現行及未來需求的初步資訊,作為了解晶片供應危機對歐盟產業影響的第一步。調查報告總共收到141份來自半導體供需雙方廠商之回饋意見,其中有54.9%來自大型企業、17.3%來自中型企業、19.5%來自小型企業、8.3%來自微型企業。調查報告對上述意見進行分析,以提供來自半導體價值鏈洞察與預測的觀點。 調查報告主要包括以下四點: (1) 預計2022年至2030年間晶片需求將倍增,未來對領先半導體技術的需求將顯著增加。 (2) 在選擇製造地點時,建立新晶片製造設施的公司將著重合格的勞工及遵循政府法令。 (3) 供應危機影響所有生態系統,預計至少會持續到2024年,迫使企業採取代價較高的緩解措施。 (4) 半導體研發資金主要與供應方相關,但補助計畫(support initiatives)也與需求方相關。 2022年2月8日歐盟執委會提出《歐盟晶片法草案》,旨在處理半導體短缺以及加強歐洲技術領先地位。隨著歐洲半導體專家小組開始研究監控與盤點架構,調查報告的結果可以協助制定《歐盟晶片法草案》與相關計畫。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現