歐盟執委會發布「歐洲健康資料空間」規則提案,旨在克服健康資料利用之障礙

  歐盟執委會(European Commission)於2022年5月3日發布「歐洲健康資料空間」(European Health Data Space, EHDS)規則提案,其旨在克服健康資料利用之障礙,以充分發揮數位健康與健康資料之潛力。EHDS為一個專門用於健康之資料共享框架(health-specific data sharing framework),針對患者以及用於研究、創新、政策制定、患者安全、統計或監管目的等電子健康資料之運用,建立明確規則、通用標準與實務、基礎設施與治理框架,無論是個人、醫療人員、健康照護提供者、研究人員、監管人員、產業界皆可由此受益。

 

  EHDS之具體內容主要包括九個章節:

(1)第一章為一般條款(General provisions),內容包括本規則之主題與範圍,並闡明定義、以及與其他歐盟法規之關係;

(2)第二章為電子健康資料之原始利用(Primary use of electronic health data),其針對歐盟一般資料保護規則(GDPR)所載權利,增訂補充性之配套保護機制,並設定醫事人員及其他健康從業人員針對EHD之義務;

(3)第三章為EHR系統與福祉應用(EHR systems and wellness applications),其主要重點為EHR系統之強制性自我認證計畫(mandatory self-certification scheme),要求其需符合可互通性與安全性等基本要求,並界定EHR系統中各經濟營運商(economic operator)之義務、EHR系統合規(conformity)要求,並負責EHR系統市場監督機構之義務;

(4)第四章為電子健康資料之二次利用(Secondary use of electronic health data),如將資料用於研究、創新、政策制定、患者安全或監管活動。本章定義一組資料類型,規範可利用之既定目的以及受禁止之目的(如商業廣告、增加保險、開發危險產品),並規定會員國必須建立健康資料近用機構(health data access body),以便電子健康資料的二次利用,並確保由資料持有者所產生之電子資料可提供給資料使用者;

(5)第五章為其他行動(Additional actions),其旨在提出其他措施以促進會員國之能量建構(capacity building),以配合EHDS之發展,包括數位公共服務之資訊交換、資金,並規範於EHDS下非個人資料之國際近用規定;

(6)第六章為歐洲治理與協調(European governance and coordination),其創建「歐洲健康資料空間委員會」(European Health Data Space Board, EHDS Board),促進數位健康當局及健康資料近用機構之間的合作,特別是電子健康資料之原始與二次利用間之關係,並包含歐盟基礎設施聯合管理小組(joint controllership groups for EU infrastructure)相關規定,其任務在於就電子健康資料之原始與二次利用所需之跨境數位基礎建設進行相關決策;

(7)第七章為授權與委員會(Delegation and Committee),其允許歐盟執委會通過關於EHDS之授權法案(delegated acts),並希望根據C (2016) 3301號決定成立一個專家小組,以便於準備授權法案、實施本規則時提供建議與協助;

(8)第八章為附則(Miscellaneous)規定,其中包含關於合作與處罰之規定,以及要求於本規則實施後進行評估與檢視之條款;

(9)第九章為延遲適用與最終條款(Deferred application and final provisions),其規定本規則與個別條款之生效日。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布「歐洲健康資料空間」規則提案,旨在克服健康資料利用之障礙, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8858&no=55&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
科法觀點
你可能還會想看
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引

  世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。

開放科學(open science)

  開放科學的基本理念,泛指在數位時代的背景下,各類型實驗測量機器獲得大量數據,以及網路行為累積的人類活動記錄,使各領域的研究活動趨向側重資料處理,結合分析工具後,以可閱讀的形式呈現並發表。   開放科學概念應用於行政與制度建立上,主要有兩個面向,其一為政府資助產出科學期刊論文等研究成果的開放取用(open access),意圖解決期刊雜誌訂閱費用過高,導致研究成果流通困難的問題,屬於早期開放科學關注的重點;其二則係使用官方研究資金進行研發時,於研究過程中取得的實驗、觀測及調查之研究資料開放運用,為近期政策與制度性倡議所聚焦,目的為使科學界、產業界以及一般社會大眾得以廣為接收並利用該些研究結果,令政府資金運用的一切成果均能充分回饋給國民與社會,期望藉由研究資料的公開,進一步深化該領域的研究進程、推展跨域研究或企業的產品與服務開發、以及創新活動。   舉例而言,日本內閣府於2018年提出的「統合創新戰略(統合イノベーション戦略)」第二章內,建構了國內開放科學下研究資料管理開放政策之基礎框架,關注伺服器空間內的研究資料保存與管理,與外國研究資料連動以建構巨量知識泉源,讓所有人得以廣泛活用該些研究資料,促成與加速跨領域與跨國境的新創。

英國國家統計局政府資料品質中心發布《政府資料品質框架》

  英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。   英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。

TOP