新加坡個人資料保護委員會(Singapore Personal Data Protection Commission, PDPC)於2022年5月17日,公布「於安全性應用程式負責任地利用生物特徵識別資料指引」(Guide on the Responsible Use of Biometric Data in Security Applications),協助物業管理公司(Management Corporation Strata Title, MCST)、建築物及場所所有者或安全服務公司等管理機構,使各管理機構更負責任地利用安全攝影機和生物特徵識別系統,以保護蒐集、利用或揭露的個人生物特徵識別資料。
隨著安全攝影機等科技應用普及化,管理機構以錯誤方法處理個人生物特徵識別資料之情形逐漸增多,因此PDPC發布該指引供管理機構審查其措施。其中包括以下重點:
(1)定義生物特徵識別資料包含生理、生物或行為特徵,及以此資料所建立之生物特徵識別模版;
(2)說明維安攝影機及生物特徵識別系統運用所應關鍵考量因素,如避免惡意合成生物特徵之身分詐欺、設定過於廣泛而使系統識別錯誤等情形,並舉例資料保護產業最佳範例,如資料加密以避免系統風險、設計管理流程以控管資料等;
(3)說明生物特徵識別資料在個資法之義務及例外;
(4)列出實例說明如何安全監控之維安攝影機,並提供佈署建築物門禁或應用程式存取控制指引,例如以手機內建生物識別系統管理門禁,以取代直接識別生物特徵,並有提供相關建議步驟及評估表。
該指引雖無法律約束力,仍反映出PDPC對於安全環境中處理生物特徵識別資料之立場。而該指引目前僅針對使用個人資料的安全應用程式之管理機構應用情境,並未涵蓋其他商業用途,也未涵蓋基於私人目的使用安全或生物特徵識別系統之個人,如以個人或家庭身分使用居家高齡長者監控設備、住宅生物特徵識別鎖等應用情境。
為強化並有效因應網路安全相關議題,美國總統歐巴馬日前於4月10日提出在2014財政年度(於2013年10月開始起算)增加強化網路安全經費之建議,期待透過藉由加強並建置相關網路安全機制的方式,有效解決目前美國所面臨來自中國、伊朗、俄國、以及其他國家之的網路安全威脅;同時,其亦希望藉此厚植並改善美國政府,以及私人企業的電腦網絡防禦能力。 本次由美國總統歐巴馬所提出的國家網路安全策略主要可區分為二部分:1. 加強美國網路事件(cyber incidents)的彈性度,以及2. 減少網路威脅事件。首先針對加強美國網路事件彈性度的部份,主要會透過a. 強化美國數位基礎建設,進而能有效抵禦滲透和干擾,b. 改善美國對於複雜和敏捷的網路威脅防禦能力,以及c. 培養針對不同類型的網路事件,皆能快速應變並恢復的能力,這三個方法來加以落實。而就減少網路威脅事件的部份,則計畫以透過a. 與美國友邦結盟的方式,共同研議國際網路規範,b. 強化網路犯罪的法律執行能力,和c. 遏止潛在對手就現有之美國網路漏洞採取不當行動,三個策略模式的實施來加以實踐。然而除了上述的兩個策略及其子項的具體落實外,美國政府亦強調串連各政府部門,以及私人企業團體間之合作重要性,以及建立一個能夠使得網路維護人員及其他相關人員,得以快速取得相關網路安全資訊的便捷管道亦為重要。 隨著全球資通訊網路交流互動以及依賴程度日益增長,如何有效兼顧個人網路安全隱私及使用自由,並同時確保網路資訊流通的安全性,乃為目前強加網路安全的重要關注焦點。本次美國總統歐巴馬所提出的網路安全推動策略走向,及其如何加以落實,實值得持續關注。
資通訊安全下之訊息分享與隱私權保障—簡析美國2015年網路保護法 日本《科技創新成果活用法》為推動研發制度的改革並強化研發能力及效率,日本於2018年12月14日通過法律修正案,將原《研發力強化法》(研究開発システムの改革の推進等による研究開発能力の強化及び研究開発等の効率的推進等に関する法律)更名為《科技創新成果活用法》(科学技術・イノベーション創出の活性化に関する法律),透過調整大學、國立研究開發法人(以下簡稱研發法人)的研究人員僱用制度、國家或人民安全相關研發預算的確保,以及研發法人投資科技研發成果之運用等相關制度的調整,以支持未來日本在科技創新研發能力的提升,以及研發成果的有效運用。 本次修法最大的重點,為研發法人投資研發成果運用的明文化,過去在《研發力強化法》中,僅規定研發法人得進行有助於成果運用的出資或技術協助等業務(第43條之2),但對於是否能保有因出資或技術協助所取得之收入(例如股票),則由各研發法人以其設置法另為規範;本次修正之《科技創新成果活用法》,則於第34條之5明文規定研發法人不受獨立行政法人不得持有股票的限制,可持有其運用研發成果進行技術作價投資或成立新創,所取得之股票或新股認股權,確立研發法人在支持研發成果運用上的功能與角色。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。