莫德納提告輝瑞COVID-19疫苗侵害其專利,判決結果或可能影響專利承諾發展

  莫德納公司(Moderna)於2022年8月26日對輝瑞(Pfizer)/BNT公司提出專利侵權訴訟,主張輝瑞之Comirnaty疫苗侵害其RNA平台技術,引發各界關注,因此舉不僅為兩大COVID-19疫苗藥廠之間之專利戰爭,同時可能引發莫德納違反其專利承諾(Patent Pledge)之疑慮,從而衍生專利承諾效力問題之爭議。

  莫德納曾於2020年10月8日於該公司官網上自願承諾:「於大流行繼續的同時,莫德納不會針對那些旨在製造對抗大流行疫苗的公司,主張我們與COVID-19相關之專利」(第一次專利承諾),而後於2022年3月7日,莫德納更改其承諾(第二次專利承諾),永遠不會針對在Gavi COVAX預先市場承諾(Advance Market Commitment, AMC)中之92個中低收入國家、或為這些國家生產疫苗之公司主張莫德納之COVID-19疫苗專利,且前提是生產之疫苗僅用於AMC之92個國家。莫德納對於輝瑞侵權訴訟之聲明亦與更新後之承諾一致,其僅請求2022年3月8日後輝瑞COVID-19疫苗侵害莫德納專利之損害賠償,而未請求2022年3月7日前之損害賠償責任。

  惟莫德納單方面更改其專利承諾並提起訴訟之行為仍引發眾多爭議,主要包括莫德納第一次專利承諾是否有法律上之拘束力、後續更改其專利承諾之行為是否有效、這些行為之影響為何等問題。就第一次專利承諾而言,目前有認為其具有法律上之拘束力,其可能可被視為一種「公共授權」(public license)行為,為專利權之書面授權且適用於任何希望接受授權者;退步言之,即使該授權未成立,莫德納基於「承諾禁反言」(promissory estoppel)之法理,亦不能隨意撤回該承諾或追溯撤銷其已授予之權利;且由於第一次承諾中所述之「大流行繼續(while the pandemic continues)」之條件在世界衛生組織未宣告疫情結束之前仍然存續,該承諾應仍繼續有效。惟亦有認為莫德納應得以第二次專利承諾可取代第一次專利承諾,而自2022年3月起主張其專利權者。

  本案針對專利承諾之效力引發許多討論,未來於此訴訟案件中法院如何評價莫德納之專利承諾以及對於其效力之認定,亦可能影響現有之專利承諾生態:若企業可任意收回、更改其承諾,並於後續得以訴訟手段提告運用其專利之第三人,或有可能影響公眾對於專利承諾信任或利用意願;而若專利承諾不能任意修改,企業須受自身之承諾嚴格拘束,則未來或許即使社會遭遇危機,企業亦不敢貿然發布專利承諾應對危難。因此,此案後續發展將對整體專利承諾與授權影響重大,值得持續進行關注及了解。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 莫德納提告輝瑞COVID-19疫苗侵害其專利,判決結果或可能影響專利承諾發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8907&no=57&tp=1 (最後瀏覽日:2025/12/31)
引註此篇文章
科法觀點
你可能還會想看
金融科技(Fintech)專利戰局:那斯達克申請備份交易紀錄之區塊鍊專利

     近年來,大型銀行及信用卡公司爭相為其核心技術及在創新上的投資尋求專利保護。從2013年截至今日,數個大型金融機構在美國已至少申請近2700項專利,這些專利涵蓋目前最火紅的領域,包含:區塊鍊、分析以及資訊安全等。金融領域的專利申請量相較前三年已達到約百分之八十三的驚人成長。   全球最大的證券交易所之一那斯達克(NASDAQ)近年來亦投入區塊鍊技術的研發及應用。去年(2015)起,那斯達克便以區塊鍊技術搭建了私募股權的智能平台Linq,今年(2016)更提出了利用區塊鍊技術備份交易紀錄以保證交易安全的專利申請。   今年十月六日,美國專利商標局(United States Patent and Trademark Office,簡稱USPTO)公布一項新的專利申請「區塊鏈交易紀錄之系統與方法」(Systems and methods of blockchain transaction recordation)。這個專利在今年三月三十一日提出,發明人為那斯達克的企業結構資深副總裁Tom Fay,及企業結構協理副總裁Dominick Paniscotti。   具體而言,這個專利是由:一個電子錢包、一個委託簿(order book),以及配對引擎所組成。該配對引擎包含一項用來紀錄、且能夠及時更新交易紀錄的「封閉區塊鍊」。 該專利申請詳細介紹了這項技術:在這個系統中,當數據交易請求間之配對被辨認出來後,系統就會生成電子錢包及相應數據交易請求的hash值。當交易的一方收到另一方的hash值與相應資訊,各交易方的交易就會被增加至區塊鍊計算系統的區塊鍊上。在這個系統下,交易所查核區塊鍊的內容,尋找與這些電子錢包相關的數據。此外,這些數據資料會被額外備份於獨立的資料庫。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)

NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針

  經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。   因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。   方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。

實現綠色工業 政府推動PC業G計畫

  將於 2006年中實行之歐洲環保指令,規定輸入歐盟的電子產品材料、及其後續回收等作業流程,皆須符合廢電子電機設備(Waste Electronics and Electrical Equipment,WEEE)以及有毒物質禁制令(Restriction of Hazardous Substances,ROHS)兩大法規。為此,經濟部於27日宣布啟動「寰淨計畫(G計畫)」,將結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品,目前所知包括華碩、神達、大眾等電腦廠商,都已經投入了此計畫。   本次所涉廢電子電機設備 (WEEE) 法規,是關於廢棄電子、電機產品的回收再利用,規定自2005年8月13日後所生產的產品需由生產者進行回收,範圍含括家用設備、資訊通訊設備、玩具休閒與運動設備、醫療裝置等產品。   另一則是有毒物質禁制令 (ROHS),其明列自2006年7月後,製程、設備及材料處理研發禁止使用6種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。   另針對回收問題,經濟部表示將輔導國內廠商建立綠色產品回收體系及回收管理平台之示範系統,並在日後將 G計畫推廣對象擴及產險公司,以協助業者因應違反歐盟規範所生之求償索賠,並建立風險控管機制。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP