歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。
《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。
歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
資訊的保密機制和數據的標準化是當代的醫護過程中,相當關鍵重要的一部分,使得資訊得以安全地蒐集、記錄和交換,同時也是衛生照護系統在品質和服務管理上得以維繫的關鍵。過去英國負責處理醫療資訊交換標準的單位為「衛生和社會照護資訊標準委員會(Information Standards Board for Health and Social Care, ISB)」,負責就國家性的資料標準進行評核、統一資料標準格式,進而符合國際規範。為了因應國家治理在資訊標準、資料收集和資料提取上新的規劃,自今(2014)年4月1日起,ISB轉型為照護資訊標準化委員會(Standardisation Committee for Care Information, SCII)。 新的照護資訊標準化委員會-SCCI主要負責發展、批准並保障資訊標準、資料蒐集與資料提取。該委員會的成員組成廣泛地來自國家單位和相關衛生、照護服務組織。現階段的主要目標為標準化醫院和家庭醫生之間的醫療資訊交換,將醫療資訊標準提升至國家層級,透過該委員會的運作來監督、改善照護服務、照護系統和資訊的處理方式,進而達到流程公開和運作透明。以下為ISB轉型為SCCI之主要原因: 1、2012衛生和社會照護法(Health and Social Care Act 2012)之規定,該法§250賦予衛生部長和NHS England(英國國家健康服務)發布資訊標準的權力; 2、NHS成立新的國家資訊委員會(National Information Board, NIB),該委員會前身為資訊服務調查小組(Information Services Commissioning Group, ISCG),主要針對衛生和社會照護提供國家層級的資訊服務整合規劃,以確保資訊標準統一,使得不同IT系統間得以相互傳輸、驅動更多整合服務給人民。SCCI即隸屬於NIB,負責識別、調查和完整執行資訊標準、資料蒐集和提取。 3、衛生部於2012年發布衛生和照護系統的10 年資訊策略(ten year information strategy for the health and care system)。
日本經產省公布AI、資料利用契約指引伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。 針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。 「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。 AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。
日亞化學與藍光LED發明人和解日亞化學與前員工、現任美國加州大學教授中村修二(Shuji Maka mura)達成和解,日亞化學要支付中村修二本人8億4400萬日圓的費用,以補償其在日亞化學任內發明藍光LED晶粒技術,並帶給日亞化學日後龐大收入的功勞。 中村修二去年1月因不甘其在日亞化學工作期間,開發相關藍光LED晶粒技術,為公司帶進3300億餘日圓的收益,但日亞化學卻將專利獨佔,並未支付中村修二合理的費用。中村修二遂向日本地院提出告訴,日本地方法院一審判日亞化學敗訴,需支付200億日圓作為中村修二的補償金。日亞化學不服再向高院上訴,近日傳出雙方已達成和解,以8億4400萬日圓達成和解,其中6億850萬日圓係中村修二在日亞化學工作時開發出藍光LED晶粒後,為公司帶進約3300餘億日圓中屬中村修二的貢獻所得。 相較於一審判決日亞化學要賠200億日圓來看,此次只需支付8億4000餘萬日圓,替日亞化學省下了一大筆錢,且可早日解決此紛爭,日亞化學在此次官司中不能算輸,還可確立日亞化學日後擁有藍光LED晶粒的所有技術專利,有利日亞化學未來拓展白光LED及藍光晶粒市場。一般認為,日亞化學急於與中村修二達成和解之因,主要是藍光L ED晶粒市場仍在大幅成長中,預估今年全球LED市場需求可達到50億美元,其中白光及藍光LED也佔到一半以上,未來更是以倍數成長。日亞化學如未能快速解決與中村修二的官司,恐影響日亞化學在藍光及白光LED市場上的領先地位。
Comcast可能因違反FCC之網路開放原則而受罰美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)主席Kevin Martin於今年(2008)7月11日表示,就Free Press、Public Knowledge、ConsumersUnion等消費者權益促進團體向FCC投訴有線電視系統業者Comcast故意阻擋BitTorrent之流量違反FCC之網路開放原則一案,他將建議FCC要求Comcast揭露其相關行為,並提醒用戶其過濾流量之行為與方式。 2007年11月時,Free Press、Public Knowledge、ConsumersUnion等消費者權益促進團體向FCC投訴有線電視系統業者Comcast故意阻擋P2P流量的行為已經違反FCC於2005年時發佈之網路開放原則。該網路開放原則包括消費者有權透過網路接近任何合法內容;消費者可透過網路自由使用任何合法之應用服務;消費者可自由將任何合法之設備與網路連接;消費者有權在各網路、應用服務或內容提供者間自由選擇。 針對前述投訴,一開始Comcast矢口否認有任何阻擋P2P資料流量之行為,隨後Comcast則改口其對於P2P資料流量之「延遲」乃是一種合理的網路管理(reasonable network management),並不違反FCC之原則。 嗣後,FCC於今年(2008)1月份公開徵求公眾意見,並持續就此一申訴進行調查。Comcast亦在6月份公布新的網路管理政策,其表示未來將不再針對特定伺服器進行網路管理,而是改以網路流量使用較高之用戶為目標,以過濾垃圾郵件、偵測惡意程式或流量以防止病毒散佈、限制或暫時延遲P2P資料流量等方式以控制或限制網路使用。