歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。

  《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。

  歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

相關連結
※ 歐盟執委會通過關於《人工智慧責任指令》之立法提案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8958&no=55&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
美國著作權法109(a)條「第一次銷售原則」之適用原則

  美國最高法院於2010年12月13日以4:4的平手票數確立了第九巡迴上訴法院於Omega, S.A. v. Costco Wholesale Corporation案中關於著作權法109(a)條「第一次銷售原則」(first sale doctrine) 並不適用於享有美國著作權法保護之外國製造但未經授權於美國再販售之產品。   此案源於由知名瑞士鐘錶品牌Omega 於瑞士製造的手錶透過所謂「水貨」或「灰色市場」的途徑輾轉由一家名為ENE Limited的紐約公司所購得,而Costco自該公司購得手錶後於加州賣場以低於合法代理商的價格販售。然而,Omega雖對於該手錶於外國的初次販售給予授權,但並未授權該商品爾後輸入美國並由 Costco 販賣之行為。Omega乃對Costco提出侵權告訴,而此案所牽連的著作物即為手錶底面都刻有受美國著作權法所保護之「歐米茄全球設計(Omega Globe Design)」字樣。   Costco則以著作權法第109(a)條作為抗辯,主張「第一次銷售原則」之規定,亦即Omega首次於外國販售該手錶之行為,已排除其對於後續散布、進口及未經授權之銷售等行為之侵權主張。第一審法院聽取Costco 之意見,Omega 乃上訴於第九巡迴法院。上訴法院對於「第一次銷售原則」之適用較為限縮,認為先前Quality King案的判決,並未使上訴法院對於「第109(a)條,只有當該主張涉及在美國國內製造受美國著作權法保護之著作的重製物時,可以對抗第 106(3)條(公開散布權)及第602(a)條(輸入權)」之一般規定無效。換言之「第一次銷售原則」並不適用於銷售外國製造但未經授權於美國再販售的著作物或其合法重製物。而最高法院亦同意上訴法院的看法。此案的判決結果意味著作權人或合法代理商將可間接防止或控制於外國製造的真品(即水貨)未經授權輸入於美國市場。

美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

美國國家寬頻計畫簡介

簡析德國自動駕駛與車聯網發展策略

TOP