歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。

  《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。

  歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

相關連結
※ 歐盟執委會通過關於《人工智慧責任指令》之立法提案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8958&no=55&tp=1 (最後瀏覽日:2025/12/01)
引註此篇文章
你可能還會想看
中國大陸公布專利法修正草案對外徵詢意見

  中國大陸國家知識產權局於2015年4月1日,公佈第四次《中華人民共和國專利法修改草案(徵求意見稿)》,其中涉及實質性修改條文共30條,包括修改現有條文18條、新增11條、刪除1條,並增加「專利的實施和運用」章。   具體修改重要內容包括:   一、強化外觀設計保護:1、產品局部外觀設計納入專利法保護範圍。2、增加外觀設計專利國內優先權制度。3、將外觀設計專利權之保護期限由10年延長到15年。4、鑒於實用新型和外觀設計專利權的授予沒有經過實質審查,具有不穩定性,草案增訂「專利權評價報告」作為侵權糾紛審理和處理過程中必須提交的「證據」,當事人無正當理由不提交,需自行承擔訴訟上不利後果。   二、提升發明人地位:1、草案規定「利用本單位物質技術條件完成的發明創造」,權利歸屬優先適用約定原則,若未約定時,申請專利權利歸屬於發明人或設計人。2、為解決國家設立之研究機構、高等院校專利技術移轉率低問題,允許發明人或設計人在單位怠於實施發明情形下,可與單位協商自行實施或者授權他人實施該專利,並按照協議享有相應權益,藉以激勵發明人積極進行技轉實施。   本次意見徵集時間已於4月28日截止,上述強化外觀設計保護及發明人地位作法,得否順利通過,有待後續持續追蹤。

美國FDA發布「醫療器材單一識別碼系統」規則草案

  美國推動醫療器材「單一識別」(Unique Device Identification, UDI)系統已行之有年,藉由建立UDI系統,強化醫療器材錯誤回報(Adverse Event Report)以及上市後產品監督(Post-Market Surveillance)等相關資訊的流通,以保障病人的安全。2007年由美國國會所通過的《食品藥物管理法修正案》(Food and Drug Administration Amendments Act of 2007, FDAAA)第226項,修正《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act , FD&C Act)新增第519項f款,提供美國食品藥物管理局(U.S. Food and Drug Administration, FDA)訂定「醫療器材單一識別系統」法規之法源基礎。另一方面,在美國國會的要求之下,FDA於2012年7月3日正式發布「醫療器材單一識別碼系統」規則草案,進行公眾預告與評論(Notice and Comment)程序。   FDA長期收集醫療器材產業、醫療社群、病人與消費者,以及產業專家之建議,而將這些建議呈現在規則草案內容中,目的在於減少廠商成本,並順利建置UDI系統,是故草案內容實採取某些公司實際使用的標準與系統經驗。FDA所發布的規則草案重點如下: 1.「單一識別碼」將分為「器材識別碼」(Device Identifier),包含特定器材的單一識別;「生產識別碼」(Production Identifier),包含器材的生產資訊。 2.將採取區分醫療器材風險程度之高低作為標準,分階段置入高風險的醫療器材的「單一識別碼系統」;低風險的醫療器材將有條件在部分或全部的規則中例外免除。 3.免除零售的非處方(Over the Counter)醫療器材適用此規範,係因這些器材尚有統一商品條碼(Universal Product Code, UPC)作為識別。   FDA宣稱,隨著系統的建置與規範的制定,絕大多數的醫療器材將必須具有統一的日期標準,包含標籤上的到期日;亦必須使UDI能夠容易閱讀,且能為系統自動識別與應用資料擷取技術,進一步成為全球UDI資料庫建置的標準。我國目前雖尚無UDI系統的相關法規範,但產業與主管機關已就相關議題進行討論,而FDA所發佈的規則草案之發展歷程,即可作為相關單位在制定法規之參考,藉此瞭解先進國家在此議題之發展,提早與先進國家之標準做接軌。

歐盟執委會對荷蘭T-Mobile併購Tele2一案展開第二階段的反競爭調查

  荷蘭電信商T-Mobile NL根據歐盟併購條例收購Tele2 NL一案使執委會擔心其合併可能導致價格上漲,並損害荷蘭消費者的權益。   本交易案主角為德意志電信(Deutsche Telekom, DT)的子公司T-Mobile NL,以及Tele2的子公司Tele2 NL,兩者分別是荷蘭手機電信市場的第3大和第4大業者。T-Mobile NL在去年12月宣布將以2.21億美元的現金收購Tele2 NL,並持有合併後公司25%的股權。本併購案將使荷蘭的手機電信商數量從4個減少到3個。但合併後的新公司仍無法超過前兩大電信公司KPN和Vodafone。   DT表示,合併後的公司將在T-Mobile品牌下運營,新公司由於規模增長,將能夠打破目前KPN與Vodafone的雙佔市場。結合原來2間公司的資源,可以帶給電信市場更有效的競爭,並有利於5G佈局。   執委會的初步調查確定了以下主要爭點: 目前T-Mobile NL和Tele2 NL 在荷蘭手機電信市場相互競爭。執委會擔心本併購案會減少市場參與者的數量,使剩下的業者更不願進行有效競爭。可能導致價格上漲和投資減少。   執委會還打算進一步調查另外2個問題: 合併後電信商數量的減少可能會削弱競爭壓力,並增加電信商聯合行為的可能性,並提高價格; 除了4家擁有基礎設施手機電信商之外,還有一些活躍在市場中的虛擬電信商,它們使用其他業者的基礎設施向消費者提供電信服務。   執委會擔心,未來虛擬電信商如想利用基礎設施,可能遭受更多阻礙。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP