歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。

  《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。

  歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

相關連結
※ 歐盟執委會通過關於《人工智慧責任指令》之立法提案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8958&no=55&tp=1 (最後瀏覽日:2026/01/04)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

美國參議院司法委員會通過草案 擬規範學名藥給付延遲訴訟和解協議

  為禁止藥廠間持續利用「給付遲延和解協議」(pay-for-delay settlements)來延遲低價學名藥品上市,美國參議院司法委員會(Senate Judiciary Committee),日前已表決通過由參議員Herb Kohl 所提之「保障低價學名藥品近用法草案」 (Preserve Access to Affordable Generic Drugs Act 【S. 369】),並已提交兩院,進行後續之討論及審查。而就該新法草案內容,大致上,是為解決品牌藥廠因採逆向給付(Reverse Payment)和解協議以阻礙學名藥品上市時,將帶來長期用藥與醫療成本增加等問題之目的而設。   而就前述所提及之訴訟協議模式來說,原則上,在品牌藥商為解決藥品專利訴訟問題之前提下,透過給付學名藥品廠商數百萬美元報酬(即補償金)之方式,來做為換取學名藥廠同意並承諾願將該公司學名藥產品延緩上市條件之對價,並藉此以保存系爭藥品原先既存之市場利潤。而對此類將嚴重影響大眾日後近用低價藥品權益之和解協議,美國聯邦貿易委員會(Federal Trade Commission;簡稱FTC)業已於近期內,作出完整之分析報告,其指明,若政府能終止此類和解協議,除將可於往後十年間,可為聯邦政府減低近120億美金之預算支出外;同時,亦可為民眾節省下近350億美金之醫療成本。   此外,由於受FTC該份分析報告之影響,於先前司法委員會之表決過程中,委員對此類訴訟和解所採之態度,也產生重大轉變,亦即,其從最初肯認可提出充分證據並證明將不會損及正常藥廠間競爭之和解協議,轉而改為,應嚴格限制此類訴訟和解協議之產生;同時,為嚇阻藥廠間給付遲延訴訟協議之達成,於此項新法草案中,亦新增相關處罰之規定。   最後,參議員Kohl強調:「一旦此項草案通過,除將可終結過往那些罔顧消費者權益之不當競爭行為外;從長期影響之角度來看,該法案亦可為公眾省下每年約數十億美金之用藥花費」。。

英國「文化、媒體及體育部」宣布了電信管制機關Ofcom的改革

  英國「文化、媒體及體育部」(Department for Culture, Media and Sport,DCMS)於2010年10月14日宣布關於19個公共部門的改革或廢除的政策,目的在增加政府公共服務的透明度與負責度。這些政策也包含針對電信管制機關Ofcom的改革方案。   針對Ofcom擬議的改革如下:修訂Ofcom每五年檢討公共廣播服務的責任,改由部長決定檢討的時機與範圍。允許Ofcom能有彈性的改變其機關結構,但須經過部長批准。廢除Ofcom促進訓練發展機會與提供公平機會的責任。改變Ofcom對區域頻道Channel 32網路安排之檢討,由年度檢討轉變為保留由Ofcom評估是否需要檢討。修訂Ofcom每三年審查媒體所有權的責任,回歸由部長決定是否檢討。取消對公共廣播服務者需提供年度節目規劃政策資訊的要求。修訂Ofcom對於Channel 3 與Channel 5的執照控制權變更的自動審查責任。允許Ofcom向ITU收取衛星申請費用。而在政府組織改革中,也計畫將郵政主管機關Postcomm合併至Ofcom,並隨之修訂其義務與權限。由這些改革方案來看,主要的作用在於修正或限制部分Ofcom的責任,以將政策制訂的權限回歸DCMS部長,減少不必要的花費與提高行政效率,後續效應值得觀察。

美國國會審議「整合公共示警和警告系統現代化法案」

  為強化智慧聯網資通訊技術之整合,推動防救災之智慧化,美國國會眾議員Gus M. Bilirakis於2013年10月10日提出「整合公共示警和警告系統現代化法案」(Integrated Public Alert and Warning System Modernization Act of 2013, H.R. 3283),該法案修正「2002年國土安全法」(Homeland Security Act of 2002)第5章,加入了第526條款,進行國家公共示警和警告系統之現代化工作。   「整合公共示警和警告系統現代化法案」要求聯邦政府應積極進行相關可經驗證和測試研發技術之使用可行性,並強化公共示警和警告之傳遞與傳播,關於預期達成之目標則為: (1) 增強更高安全性、可靠性,並強化聯邦政府的警報和預警能力; (2) 快速預警傳播效率; (3) 改善通知遠程位置之能力; (4) 增強定位地理目標能力,以及 (5) 傳遞多種通信方式提供警報和預警的能力,其也規範聯邦政府應制訂調整政府之共同警報和預警協議、標準、名詞術語定義,以及公共警報和預警系統的操作流程。法案更採用多元化傳遞機制,來傳播國土安全資訊和其他警告資訊給公眾,從而觸及最多數人,聯邦政府更應加強研發及採用各種未來科學技術及整合應用。   其次,法案乃要求應設立「整合公共警報和預警系統諮詢委員會」,除了聯邦政府及地方政府官員代表須參加外,並應納入民間產業參與等意見諮詢,特別是明訂應結合: (1) 通信服務提供商; (2) 系統、設施、設備,並提供通訊服務能力之廠商、開發者和製造商; (3) 第三方服務者 (4) 傳播產業; (5)手機產業; (6) 寬頻產業; (7) 衛星產業等。並且,為了促進地方和整體區域合作,提倡公私夥伴合作關係,強化社區防範和因應,乃特別強調「商用行動通訊服務提供者」(Participating Commercial Mobile Service Provider)之參與和角色定位,依定義,乃指稱「被選定自願性參與負責公共警示情報傳遞之商用行動通訊服務提供者」。   截至2014年4月底,本法案已在眾議院委員會待審,相關立法趨勢與發展當持續關注之。

TOP