歐盟NIS 2指令生效,為歐盟建構更安全與穩固的數位環境

歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union, NIS 2 Directive)於2023年1月16日正式生效,其於《網路與資訊系統安全指令》(Directive on Security of Network and Information Systems, NIS Directive)之基礎上,對監管範圍、成員國協調合作,以及資安風險管理措施面向進行補充。

(1)監管範圍:
NIS 2納入公共電子通訊網路或服務供應、特定關鍵產品(如藥品與醫療器材)製造、社交網路平台與資料中心相關數位服務、太空及公共行政等類型,並以企業規模進行區分,所有中大型企業皆須遵守NIS 2之規定,而個別具高度安全風險之小型企業是否需要遵守,則可由成員國自行規範。

(2)成員國協調合作:
NIS 2簡化資安事件報告流程,對報告程序、內容與期程進行更精確的規定,以提升成員國間資訊共享的有效性;建立歐洲網路危機聯絡組織網路(European cyber crisis liaison organisation network, EU-CyCLONe),以支持對大規模資安事件與危機的協調管理;為弱點建立資料庫及揭露之基本框架;並引入更嚴格的監督措施與執法要求,以使成員國間之裁罰制度能具有一致性。

(3)資安風險管理措施:
NIS 2具有更為詳盡且具體之資安風險管理措施,包含資安事件回報與危機管理、弱點處理與揭露、評估措施有效性的政策與程序、密碼的有效使用等,並要求各公司解決供應鏈中的資安風險。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟NIS 2指令生效,為歐盟建構更安全與穩固的數位環境, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8973&no=66&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國廠商使用之DMCA侵權調查正確性遭質疑

  一項由華盛頓大學所發表的研究聲明指出,媒體工業團體正使用有瑕疵的方式調查peer-to-peer網路文件共享中侵害著作權的問題。包括M.P.A.A.、E.S.A.、R.I.A.A等團體,不斷寄出逐年增加的DMCA侵權移除通知(takedown notices)給各大學和其他的網路業者。許多大學會在未經查證的情況下直接將侵權移除通知轉寄給學生,R.I.A.A.甚至跟進其中的一些侵權報告並將之寫入財務報告中。   但在2008年6月5日由華盛頓大學的助理教授等三人所發表的研究中認為這一些侵權移除通知應該更審慎檢視之。研究指出,這些團體在指控檔案分享者的調查過程中有嚴重的瑕疵,可能使對方遭受不當的侵權指控,甚至可能來自其他網路使用者的陷害。在2007年5月及8月的兩次實驗中,研究員利用網路監控軟體監控他們的網路流量,實驗結果顯示即使網路監控軟體並未下載任何檔案,卻仍然接收到了超過400次的侵權警告信。   該研究結果顯示執法單位的調查過程中只查詢了網路分享軟體使用者的I.P.位址,卻未真正查明使用者正在下載或是上傳的實際檔案為何,在這種薄弱的搜查技巧跟技術方式之下任何使用網路文件分享軟體的使用者都可能被告,不論其所分享的檔案是否侵權皆如此。

美國Farmers Insurance Group在加州以竊取營業秘密為由控告前員工以及Automobile Club of Michigan

  2017年10月,美國知名保險公司Farmers Insurance Group(下稱Farmers)在加州法院提訴,控告前員工Venkatesh Kamath(下稱Kamath)、前資訊長Shohreh Abedi(下稱Abedi)和競爭對手American Automobile Association(下稱AAA協會)旗下的Automobile Club of Michigan(下稱Auto Club)竊取營業秘密。   Farmers聲稱,於2015年起使用Guidewire Software(下稱Guidewire),以更新其理賠處理和保險服務系統。Kamath因Guidewire業務,接觸到Farmers高度敏感與機密資訊。Abedi前為Kamath上司,曾監督Guidewire計畫初期階段。之後Abedi至Auto Club任職,協助Auto Club轉換使用Guidewire,並挖角包括Kamath在內許多Farmers員工。Kamath離職前,從Farmers電腦中拷貝超過6400份檔案,其中包括與Guidewire計畫及Famers核心業務相關的營業秘密資訊。   Farmers控訴Kamath、Abedi及Auto Club違反加州營業秘密法(California Trade Secret Act)、從事不公平競爭、違反忠實義務及其他事由,除訴請賠償外,也請求法院禁止被告使用其營業秘密。   本案非Farmers與AAA協會首次因營業秘密事宜而對訟。2010年間,Farmers曾控告AAA協會旗下Auto Club Group竊取其投保客戶機密資訊,惟該案當時經法院以Farmers未能證明有何損失或損害為由,駁回其訴。Farmers公司於2017年10月對Auto Club提起的本件訴訟,法院實務的發展為何,值得後續觀察。

IMDRF於2025年3月提出《醫療器材監管依賴計畫操作手冊》草案,促進國際監管的一致性與產品流通性

一、緣起與目標 「依賴制度(reliance)」指一國有效利用他國的審查結果,而減少重複作業、提升效率,並促進病人更快取得安全、有效產品的政策。為此,國際醫療器材法規管理論壇(International Medical Device Regulators Forum, IMDRF)於2025年3月提出《醫療器材監管依賴計畫操作手冊》(Playbook for Medical Device Regulatory Reliance Programs)草案,協助各國建立與管理依賴制度。惟此制度並非「無條件接受他國決策」或「國際換證」,而須由各國自行決定如何利用依賴制度,並承擔最終監管責任。 二、應用範圍 該手冊適用於所有醫療器材(含體外診斷器材)或輔具,並涵蓋產品生命週期各階段(如技術文件審查或品質管理系統驗證等)。 三、依賴機制的類型 手冊歸納三類依賴機制並舉例說明: 1.工作共享(Work-sharing):指多國協作進行監管任務,可為聯合評估、聯合檢查,或共同推出監管標準等。如IMDRF推出的「醫療器材單一稽查計畫」,訂定多國之驗證機構對製造商的統一稽核標準,使廠商受稽後所作成的稽查報告可一次性符合數國法規。 2.簡化審查(Abridged Review):以他國完整的審查成果作為基礎,僅針對當地「特有」及「新增」的風險進行審查。如新加坡健康科學局已實施簡審制度。 3.承認(Recognition):正式接受他國監管決策結果作為判斷依據,可分為單、雙、多邊的承認。如CE標誌的醫材可在歐盟27個成員國內通行。 四、結語 IMDRF並非藉由該手冊推行「最佳模式」,而是協助各國依需求發展適合的監管依賴策略,加強協作與資源共享,進而促進全球監管上的一致性與產品流通性。近年世界衛生組織及區域組織(如歐盟、東協、非洲聯盟發展署)越加重視各國監管法規的一致性,並將審查資源移向人工智慧或高風險醫材的監管探索中,此監管趨勢值得我國持續關注。

TOP