美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。
本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。
本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
本文為「經濟部產業技術司科技專案成果」
美國聯邦運輸部(US Department of Transportation)於2021年1月11日發布「自駕車全面性計畫(Automated Vehicles Comprehensive Plan, AVCP)」,建立了交通部促進合作、透明性與管制環境現代化,並將自動駕駛系統(Automated Driving Systems)安全整合入交通系統之策略。基於過去「自駕車政策4.0」建立之原則上,自駕車全面性計畫定義了三個目標以達成其願景: 促進合作與透明性:交通部將會促進其合作單位與利益相關人可取得清楚且可靠之資訊,包含自駕系統的能力與限制。 使管制環境現代化:交通部將會現代化相關規範並移除對創新車輛設計、特性與運作模組之不必要障礙,並發展專注於安全性之框架與工作以評估自駕車技術的安全表現。 運輸系統之整備:交通部將會與利害相關人合作實施安全的評估與整合自駕系統於運輸系統之基礎研究與行動,並促進安全性、效率與可取得性。 政策文件中也就相關目標提出了關鍵目的以及行動,包含先前交通部所提出的「自駕系統安全性框架(Framework for Automated Driving System Safety)」草案,將透過建立框架定義、評估並提供自駕系統的安全性需求,並同時保留創新發展之彈性;另外此政策文件也提出了如何將自駕系統融合現有技術應用之實際案例。交通部將會定期的檢視相關行動與計畫,以反應技術與產業發展,並減少重複性之行動,並將資源投注於重要領域。
KISTEP發布〈強化企業創新活動之研發租稅優惠政策研究〉報告,建議擴大租稅優惠對象韓國科學技術評估暨規劃研究院(Korea Institute of S&T Evaluation and Planning, KISTEP)於2023年5月3日發布〈強化企業創新活動之研發租稅優惠政策研究:以國家戰略技術研發企業為中心〉(A Study on R&D Tax Support Policy for Enhancing Corporate Innovation Activities:Focusing on National Strategic Technology R&D Firms,下稱本報告),提供政府擴大研發租稅優惠政策之建議,分述如下: (1)擴大適用稅額抵減之技術領域 為強化競爭力,各國陸續鎖定重要技術產業,擴大研發租稅優惠政策,故本報告建議韓國政府就稅額抵減範圍,從3大領域(半導體、蓄電池與疫苗),擴大至12大國家戰略技術領域,進而增加民間企業之研發補助。 (2)擴大適用研發稅額抵減之對象 由於韓國目前適用研發稅額抵減之對象,不包括負責研發之新創企業負責人及管理階層,故本報告建議韓國應考量稅額抵減制度之效果與制度公平性,擬定一套新方案,擴大可享受稅額抵減優惠的對象。 (3)調高中大型企業之稅額抵減率 本報告指出,激進式創新及專利被引證次數高的創新技術研發,大多由中堅企業及大企業所主導,故建議應研擬一套以中堅企業與大企業為對象,大幅調高可抵減稅額比率之方案。 (4)透過政策組合(Policy mix)以提高政策效益 本報告指出,當企業獲得研發補助時,其研發稅額抵減效果更為顯著,故建議政府研擬以企業為對象,採用研發稅額抵減與補助並行之優惠方式。 (5)集中對技術水準高的企業提供租稅優惠 本報告指出,研發稅額抵減效果侷限於技術水準高的企業。換言之,與將租稅優惠分散給予各企業,不如選定具有技術能力的企業,使其獲得更多的研發稅額抵減優惠。 (6)擴大開放式創新企業之租稅優惠 本報告指出,研發租稅優惠效果對執行開放式創新之企業更為顯著,故建議將執行「產–研」、「產–學」、「產–產」合作的開放式創新企業納入租稅優惠對象。
政府資訊業務委外涉及個人資料保護法律責任分析及因應建議 英國上訴法院法官對軟體專利之必要性表示懷疑英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。 軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。