美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。

本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。

本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8974&no=57&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
歐盟擬大幅調降文字簡訊傳輸費用

  歐盟執委會電信委員Viviane Reding提出一項擴大手機漫遊簡訊計畫(cross-border text messages plans),主要內容系將目前平均一通49美分的漫遊文字簡訊傳輸調降70%以下。在確定這項政策可以獲得歐盟民意的支持後,新的正式立法計畫將在2008年秋天完成,經過歐盟政府與歐盟議會同意後,預計於2009年的夏天實施這項新政策。     雖然丹麥建議以4.2美分作為零售文字漫遊簡訊的價格上限,但是在徵詢各方意見後,電信委員會最後仍然決定以12美分做為文字漫遊簡訊的價格上限。除此之外,依據電信委員會的消息指出,文字漫遊簡訊的批發價上限也將可能調降在4到8美分之間。     有業者表示,歐盟電信委員會增加對於電信費率的價格管制,將會降低業者研發新服務的意願。但是,歐盟電信委員會認為業者的主張,並不能構成文字簡訊費率上限政策施行的阻礙。     由於文字簡訊的市場已經成熟,業者在此項服務的獲利上已相當穩定,因此透過合理的價格上限,可以讓消費者有更符成本的漫遊文字簡訊服務,同時業者也能持續在此項服務上獲利。但是反觀資料傳輸尚處於萌芽階段,因此電信管制者與系統業者皆認為目前就漫遊的資料傳輸進行價格上限管制尚不適宜。     另外,Reding於2007年曾提議對於歐洲漫遊語音通話的價格進行上限管制,此項電信費率政策受到習慣於暑假進行跨國旅遊的歐盟居民的歡迎,Reding表示此項於2009年到期的政策極可能再延長三年至2012年。

2023年日本著作權法修訂之相關規範

2023年5月17日,日本國會通過了《著作權法》部分條文修正案,並於同月26日公布(2023年第33號法)。 隨著數位化的進步,內容的創作、傳播和使用變得更加容易,不再只是過去主流的出版社、電視台等「專業人士」才能從事,而是一般普羅大眾也可以參與創作,並將內容貼在網路上。與此同時,既有著作之重新利用的需求等情形均日益增加,然而此類內容的問題在於難與著作權人取得聯絡,不一定可順利使用。 為了解決上述問題,本次修正重點之一係新增第67之3條,根據該條規定,儘管著作之利用人採取了確認著作權人授權意願等措施,但仍無法確認著作權人授權意願時,得向文部科學省所屬之文化廳申請裁定,經文化廳長裁定允許利用並繳納補償金後,利用人得於該裁定所定之期間內(申請書所載之期限最長不得超過3年)先行使用該著作。新裁定利用制度放寬了確認著作權人意願之程序與要求,降低使用門檻,並同時規定著作權人可聲請撤銷使用,如果文化廳長裁定撤銷使用,則利用人應停止繼續使用該著作,著作權人得依利用人實際使用期間之比例領取補償金。另為簡化及加快程序,關於新裁定利用制度之申請受理、要件確認與補償金額的決定等部分事務,文化廳長得指定特定之民間機構作為聯絡窗口負責相關行政手續之處理(第104條之33以下相關規定)。 新裁定利用制度的建立,將有助於促進著作之流通利用,即認為已充分週知著作權人,且盡可能地確認著作權人等是否可以使用的意思,仍不能確認意思狀態之著作,而採取一定措施放寬使用是妥適的。因考慮到週知等需要時間,乃決定從公布日(2023年5月26日)起3年內施行。 本文同步刊登於TIPS網(https://www.tips.org.tw)

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

中國大陸「網路預約出租汽車經營管理暫行辦法」

  所謂中國大陸《網路預約出租汽車經營管理暫行辦法》,是指中國大陸針對目前在各國都陸續發生法律爭議的網路出租車叫車平臺,例如源自美國加州舊金山的優步(Uber),或是中國大陸當地發展的滴滴打車服務,所制定的專法規範,以期解決網路出租車叫車平臺所可能產生的法律爭議。   類似Uber的服務型態,之所以會產生法律爭議,主要是因為汽車運輸載客的商業行為,在各國都會受到汽車運輸業的相關管制,以保障運輸服務乘客安全及消費權益。以德國為例,就曾因此對Uber進行行政處罰,並進一步於司法判決中要求Uber司機需取得營運牌照。   也因此中國大陸交通運輸部在2016年7月14日通過,並於2016年11月1日起施行《網路預約出租汽車經營管理暫行辦法》,該規定將網路預約出租汽車服務定義為「預約出租客運」,平台業者需負擔車輛營運、收益分配與司機管理等等的任務,且其地位為中國大陸汽車運輸載客法規中的客運服務承運人,需負擔相當責任,而並非如Uber等所主張的其僅為仲介平台,不具客運服務承運人之地位。   此外,該辦法亦要求網路預約出租汽車之司機應滿足無交通肇事犯罪紀錄、無危險駕駛犯罪紀錄、無吸毒紀錄、無飲酒後駕駛紀錄、無暴力犯罪紀錄等條件。

TOP