美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。
本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。
本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
本文為「經濟部產業技術司科技專案成果」
美國布希政府為捍衛1998兒童線上保護法(1998 Child Online Protection Act),要求法院命Google提交有關民眾使用該公司之搜尋引擎所輸入之關鍵字資料,以證明透過搜尋引擎,兒童使用電腦連結到色情網站並非不易。但是,Google主張此將會危及其使用者個人的隱私以及其營業秘密。 一名負責審理此案的法官於日前表示,其將會考量政府蒐集此等資料的需求以及Google之使用者的隱私保護議題,且其可能會允許司法部 (Justice Department) 可以接近使用 (access) 一部分由Google所建立的網站連結目錄,但並不是Google使用者所輸入的關鍵字資料。
美國2018年5月14日拜杜法修法生效,NIH同年10月因應修法公布對應修正的研發成果經費資助政策美國拜杜法案修改由美國商業部的國家標準暨技術研究院(National Institute of Standards and Technology;簡稱NIST)於2018年5月14日發布生效,美國各界稱此次修法案為新拜杜法或是2018拜杜法(new Bayh-Dole Act Regulations)。除此之外;國家衛生研究院(National Institutes of Health;簡稱NIH)也於同年10月公布對應修正的研發成果經費資助政策,並調整IEdison系統以符合新法規。本次修法釐清多項定義、減低法規負擔、解決受資助單位與資助單位共有發明的問題、簡化電子控管程序。修法內容簡要說明如下: 適用範圍不限組織規模,包括非營利機構、小企業、個人,並擴及大企業。 若聯邦雇員是研發成果的共同發明人,其所有權由聯邦資助單位擁有。 一連串時間修正。包括(1)聯邦政府取得研發成果所有權改為無時間限制(原來是60天)。(2)研究機構須在專利申請期限60天前回復聯邦不申請專利的決定(原來是30天)。(3)美國臨時案申請轉為正式專利申請案的時限改為10個月,因為還需要加上提前60天通知聯邦機構不申請專利。 研究機構有權在工作合約要求職員將研究發明權利讓與給研究機構。 最初專利申請的範圍擴及PCT申請以及植物發明品種申請(原本僅限專利申請以及臨時案申請)。
日本提出未來車聯網社會之三大威脅及促進實現車聯網社會策略日本總務省之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年8月4日公布研究成果。車聯網研究會指出未來車聯網將面對①遠距離操作、網絡攻擊之威脅;②資料(Data)真實性之威脅;③隱私權之保護等三大威脅。針對遠距離操作、網絡攻擊之威脅,在汽車端及網路端皆應提出防止威脅之策略;在確保資料真實性方面,需建立機制,以防止資料中途被篡改;未來在車輛雲端資料之應用,應以隱私權保護為前提,始促進車輛資料之利用及活用,以保護相關人之隱私權。 車聯網研究會在促進實現車聯網社會策略中,希望透過①聯網計畫(Connected Network プロジェクト)、②互聯資料計畫(Connected Data プロジェクト)、③互聯平台計畫(Connected Platform プロジェクト)等三個計畫,共同建立推廣實證平台,以確立及實證必要之技術,建立資料利用及活用之模式及環境,架構開放性合作模式,並確保隱私及安全性。進而建設高度可靠性之無線通信網路、透過創新產業和商業模式促進資料之利用、創新環境的發展,達到解決日本之社會問題、實踐便利與舒適之生活、國家競爭力之強化與確保等車聯網社會三大目標,最終落實安全、安心、舒適的車聯網社會。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。