美國食品藥物管理局修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》指引草案

美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年3月15日修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》(Electronic Systems, Electronic Records, and Electronic Signatures in Clinical Investigations: Questions and Answers)指引草案,為試驗委託者、臨床研究人員、人體研究倫理審查委員會、受託研究機構及其他利害關係人統整電子系統、電子紀錄及電子簽章常見問答,供食品、醫療產品、菸草製品及動物新藥臨床研究參考。

本指引草案修訂2017年6月21日所發布的《21 CFR part 11臨床研究使用電子紀錄及電子簽章—問答集》(Use of Electronic Records and Electronic Signatures in Clinical Investigations Under 21 Part 11-Questions and Answers),並將於本指引最終版確定後,取代2007年5月10日所發布的《臨床研究使用電腦系統》指引(Computerized Systems Used in Clinical Investigations)。US FDA認為電子系統、電子紀錄及電子簽章是可信且可靠的,並且通常可等同於紙本紀錄及手寫簽名的方式。

本指引修正重點如下:

一、新增電子系統驗證的風險基礎方法,以確保臨床研究建立、修改、維護、歸檔、檢索、傳輸電子資料及紀錄的真實性、完整性及機密性。

二、統整試驗委託者與資訊科技服務供應商合作應注意事項,以確保電子紀錄符合監管要求。

三、新增數位健康科技(digital health technology, DHT)定義及使用DHT考量重點。

關於臨床研究使用DHT,亦可參考2021年12月23日所公布的《透過數位健康科技擷取臨床研究遠端資料》(Digital Health Technologies for Remote Data Acquisition in Clinical Investigations)指引草案。該指引草案針對DHT的選擇、驗證、應用、訓練及風險提供相關建議。於臨床研究使用電子系統、電子紀錄及電子簽章已為國際趨勢,對於各國相關規範值得持續關注。

本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw

相關連結
※ 美國食品藥物管理局修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》指引草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8978&no=57&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
美國聯邦最高法院於Michigan v. EPA案中認定減碳措施需先考量成本效益

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題

  2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。   各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。   未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。

美國專利多方複審程序與領證後複審程序之概述

TOP