經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段:
1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。
2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。
3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。
4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
Ofcom第八次電信與付費電視申訴報告Ofcom在今(2013)年3月公佈「2012年第四季電信與付費電視申訴報告書」(Telecoms and Pay TV Complaints Q4 2012),以履行2003年通信法(Communications Act 2003)第26條規定:Ofcom應公布通訊資訊與建議於消費者。是故,為維護消費者之權益,並促進市場競爭,Ofcom從2011年4月起每季公佈「電信申訴報告書」 (Telecoms Complaints);同年10月修訂為「電信與付費電視申訴報告書」(Telecoms and Pay Tv Complaints)。這份報告書不僅協助消費者選擇較好供應商,更意在促進業者服務品質,而從幾次報告書中顯示,業者們被投訴量確實持續下降,可見效果斐然。 Ofcom選擇市占率超過4%、且每月被投訴超過30次的市話、固網寬頻、行動通信服務(月租),與付費電視為調查對象,以維護統計信度。當消費者申訴具有綑綁式服務(bundled services)業者,則視其申訴是否涵蓋多種服務,以Sky同時具有電話、網路服務為例,當民眾申訴廣告不實後,則此申訴僅被記錄於網路服務。由於,民眾申訴範圍相當廣泛而難以統整,Ofcom僅向外界公布業者被投訴的次數,且有下述研究限制: 1.Ofcom僅蒐集本身受理的申訴數據,而其他組織、供應商所受理的,一概不納入報告書。 2.Ofcom雖力求數據的合理性,但不會檢驗消費者投訴的真實性。 3.當Ofcom倡導某些政策時(例如打及廣告不實),可能會導致某些業者申訴量提高。 在這次報告中,各領域被投訴最多的業者如下:Talk Talk於市話服務被投訴最多,被投訴的理由多數為服務缺失與相關服務爭議。Orange則在固網寬頻、行動通信服務(月租)受到最多申訴,其原因是Orange採取民眾購買寬頻服務後,方得再取得免費網路,以取代原本免費網路的提供。在付費電視上,則是BT Vision受到最多申訴,而內容多為提供服務與處理申訴之缺失。Ofcom期以公佈這些資訊,讓消費者得於每個領域選擇最好的供應商。
美國EPA以強制法制推動大型工業設施導入符合綠色環保、效率節能等新興技術措施為落實推動可謂污染源主要大宗之大型工業設施,積極改善並導入符合綠色環保、效率節能等新興技術或措施,美國環保署(Environmental Protection Agency,EPA)於2010年12月完成「溫室氣體排放量許可方案(Framework for Greenhouse Gas Permitting Programs)」以確保未來國內新設置大型工業設施,其溫室氣體排放量能取得認定,並符合聯邦「清潔空氣法案(Clean Air Act)」許可規範。環保署並將推動各項行動,協助州地方政府調整法令及措施,屆時符合聯邦法規相關要求標準。 依據此方案,自2011年1月起美國境內大型工業設施若有興建或進行重大修改計畫,必須使用能源效率措施、符合效率成本科技來興建,確保能減少溫室氣體排放,並取得符合許可證明,以此模式控制達成美國溫室氣體減量目標。 並且,環保署並同時公佈制訂「特定產業新污染源排放標準(New Source Performance Standards,NSPS)」,而特定產業將包括石化燃料發電廠與煉油廠,兩項目前可謂最大工業污染源;並且所管制的空氣污染源,擴及包括溫室氣體、毒性化學物質,以及六種於「清潔空氣法案(Clean Air Act)」明定指標污染物(Criteria Pollutant)的重大常見空氣污染物。這些NSPS將設立特定產業新工業設施污染物之排放標準限制,並規範控制既有工業設施之空氣污染。美國環保署表示,未來將定期更新這些標準限制,以因應相關科學技術革新。 環保署官員認為,這些推動措施將引領美國企業永續升級,開發更多綠色能源技術,吸引更多投資,並增加整體產業競爭力。然而,環保署這些措施,卻引起美國石油協會(American Petroleum Institute)代表的反彈,並認為環保署這項強制措施是史無前例,亦不符合「清潔空氣法案(Clean Air Act)」立法意旨及規範用意。環保署近來積極推動「溫室氣體排放量許可方案」,以及制訂「特定產業新污染源排放標準」,未來成效如何,及是否得以落實實施,有待後續觀察。
舊金山監事會通過決議禁止政府使用臉部辨識美國舊金山監事會(San Francisco Board of Supervisors,編按:監事會是舊金山市的立法部門,性質類似議會)於2019年05月通過停止秘密監察條例(Stop Secret Surveillance Ordinance),並將其訂入行政法規(San Francisco Administrative Code)條文,包括增訂第19B章及修訂第2A.20節、第3.27節、第10.170-1節和第21.07節。根據行政法規第19B章,舊金山政府及執法機構未來將不能使用臉部辨識科技,也不能處理或利用任何自臉部辨識科技取得的資訊。 易言之,在公共場所安裝具備臉部辨識科技的監視器,或暗自使用臉部辨識科技尋找嫌疑犯都構成違法行為。然而,法規的修訂不代表舊金山內所有臉部辨識系統將全面停止。由於舊金山機場及港口屬美國聯邦政府管轄,不受地方政府法律所規範,仍可使用臉部辨識科技;而民眾及私人企業並非修訂條文的規範對象,亦可繼續採用。 此次法規的修訂引發高度關注,各界也熱烈討論。反對者表示,法規的修訂使執法機關打擊犯罪的努力付之一炬,危害民眾安全;贊成者則認為,臉部辨識科技過分侵害人民的隱私權和自由權,應對其有所限制。畢竟,臉部辨識科技並非萬無一失,尤其當受辨識者為女性或深膚色人種時,準確率往往下降許多,而有歧視的疑慮。舊金山首開先例立法,成為全美第一個限制政府使用臉部辨識科技的城市,其他城市或國家未來是否會仿效而相繼立法,值得繼續關注。