經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段:
1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。
2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。
3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。
4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國聯邦巡迴上訴法院(CAFC)於2008年8月13日,在Jacobsen v. Katzer一案中,對於未遵守自由軟體授權條款而使用他人著作,作成構成著作權侵害之判決,扭轉地方法院之判決結果。由上訴人Jacobsen經營的JMRI(Java Model Railroad Interface),透過多數參與者集體協作的程式DecoderPro,為開放資源的自由軟體,採取Artistic License模式,供模型火車迷編輯解碼器晶片(decoder chip)的程式以操控模型火車;被告Katzer從 DecoderPro下載了數個定義檔來製作一套市售軟體稱Decoder Commander,卻未遵守該自由授權條款,包括未標示JMRI為原始版本之著作權人、可從何處取得標準版本、及修改後版本與原始版本差異部份之註記等。 Jacobsen認為Katzer的侵害著作行為已造成不可回復之損害,請求法院暫發禁止命令(preliminary injunction)以停止Katzer的違法行為,地方法院認為被告乃違反非專屬授權契約,應依違反契約責任負責,不另構成著作侵權行為,駁回暫發禁止命令的請求。 聯邦巡迴上訴法院認為本案爭點在於「自由軟體授權條款的性質究屬契約內容(covenant)或授權條件(conditions of the copyright license)?」,由於Artistic License之用語為「在符合下列條款之條件下」(provided that the conditions are met )方能重製、修改及散布,以遵守授權條款為取得授權之條件,本案中Katzer未能遵守條款,因而根本未取得授權,其行為屬無權使用而構成侵害著作權,是以命地方法院就暫發禁止命令一事重新審理。在善意換取善意(Creative Common,創用CC)及分享著作的潮流下,支持者譽此結果為自由軟體的一大勝仗。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。 增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。 大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。 近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。
日本產業活力再生法等修正案公布施行日本政府為求讓日本經濟發展能因應當前國際經濟現勢的結構性變化,相關產業活動有進行革新之必要;因此,日本政府提出「促進我國產業活動革新之產業活力再生特別措施法等法律部分修正案」(以下簡稱修正案),修正案係採包裹立法方式,修正「產業活力再生特別措施法」(簡稱產活法)、「礦工業技術研究組合法」(簡稱研究組合法),以及「產業技術力強化法」(簡稱產技法)等法律。修正案於今(2009)年4月22日經日本國會立法通過,同月30日公布(平成21年4月30日法律第29号),並於同年6月22日施行。以下針對三部法律中之主要修正項目簡介之。 首先,在產活法中,主要修正處是日本政府將出資與民間合作,成立「產業革新機構」股份有限公司,目的在結合公私資源,投資創新活動,包括集結最尖端基礎技術以協助進入應用開發階段,建立連結創投資本、新創企業與擔任將技術事業化之大企業的機制,以及將有技術優勢但埋沒大企業中之技術加以組合,並集中投入人力及資金以發揮價值。其次,在研究組合法中,主要修正處包括,擴大研究組合中可研發主題之技術範圍,放寬加入組合成員之資格,賦予研究組合組織變更、分割合併之可能。最後,在產技法中,主要修正處在於讓國有研發成果可以低於市價之價格實施,以促進將成果活用轉化成為產業實用之支援。日本政府之相關革新作法,其實際成效及對我國之啟發值得後續加以關注。