美國證券交易委員會(United States Securities and Exchange Commission,下稱SEC)於2022年12月8日發布「致公司有關近期加密資產市場發展之樣本函(Sample Letter to Companies Regarding Recent Developments in Crypto Asset Markets)」指引文件(下稱本指引),指導公司應針對自身業務涉及近期加密資產市場動盪事件(如虛擬貨幣交易所破產等),進行直接或間接影響之風險揭露,以符合聯邦證券法規之資訊揭露(如風險及風險暴露等)義務。SEC轄下之企業金融處(Division of Corporation Finance,以下簡稱金融處)認為公司應向投資者提供具體且量身訂製之市場動盪事件報告、揭露公司在動盪事件中之狀況以及可能對投資者造成之影響。爰此,本負有常態報告義務的公司應據此考量現有的揭露內容是否須進行更新。
金融處說明,為加強並監督公司對資訊揭露要求之遵守狀況,爰依據1933年證券法(Securities Act of 1933)及1934年證券交易法(Securities Exchange Act of 1934)內涵,要求公司亦須針對應作出聲明的實際狀況,進一步揭露相關重大訊息,且不得進行誤導。本指引所要求公司明確揭露加密資產市場發展的重大影響,包括公司對競爭對手及其他市場參與者之風險暴露;與公司流動資金及獲取融資能力相關的風險;及與加密資產市場法律程序、調查或監管影響相關的風險等。
值得注意的是,本指引並未列出公司應考量問題的詳細清單,個別公司應視自身情況評估已存在之風險,或是否可能受到潛在風險事項的影響。由於公司所揭露之文件事前通常不會經過金融處審查,因此金融處也敦促各公司應自主依循本指引進行相關文件準備。
BRCA1與BRCA2乃兩個已經被確認的基因,係用來檢測婦女是否容易罹患乳癌或卵巢癌的重要基因。在澳洲這個檢測產品是由基因技術有限公司(Genetic Technologies Limited, 以下簡稱GTL)所擁有。因檢測費用高達3,700元美金且無法有其他的檢測選擇,形成獨占。 今(2010)年3月,美國紐約聯邦地方法院(United States District Court Southern District of New York)認為BRCA1與BRCA2等人類基因乃如同血液、空氣或水的結構,屬於自然的產物,不具有可專利性,系爭專利阻礙了乳癌與卵巢癌相關研究與創新,並限制檢測的選擇性,因而作出BRCA1與BRCA2基因不具可專利性之判決。 受到美國判決之影響,今(2010)年6月澳洲的癌症之聲消費者團體(Cancer Voices),及一名患有乳癌的婦女同向雪梨聯邦法院(Australian Federal Court in Sydney)提起訴訟,希望免除GTL對於檢測乳癌與卵巢癌產品的獨占權利。主要理由包括,對人類的一部分(基因)給予專利,不但阻礙了後續研究,也會阻礙乳癌與卵巢癌治療方法的研發,更提高許多病患接受此檢測的障礙。固然專利權人得維持高檢測費用,但有別於傳統工程或技術上的專利,生物技術專利也含有高度追求人類健康之公共利益,因此握有生物技術專利者,實不應利用獨占地位阻礙的人類健康的維持與追求,阻礙醫療或治療方式的研究。 過去澳洲專利局認為自自然產物分離的基因或物質是具有可專利性的,此案若勝訴,澳洲專利局將調整原先承認自自然產物分離的基因或物質,具可專利性之見解,所以該案的後續發展值得我們關注。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。
德國聯邦內政部對歐盟部長會議「資料保護基本規則」(Datenschutz-Grundverordnung)發表意見書,並提出修法建議德國聯邦內政部資料保護與資訊自由委員會於2015年8月15日針對歐盟部長會議於6月15日所確立對歐盟資料保護基本規則(Datenschutz-Grundverordnung)的基本立場,若依該立場則(1)資料處理目的之變更理由將變得更寬泛(2)對資訊保有機構所提出的申請程序以有償為原則(3)蒐集個人資料應遵循之規範過於簡略等,該委員會提出批評與建議。 該委員會會議認為有必要改進歐盟「資料保護基本規則」,令其更周延,更呼籲對資料保護基本規則的修正,應循以下重點及原則進行: 1.資訊節約原則應該堅持 多年來在德國法已確立的資訊節約原則(Datensparsamkeit)和資訊避免原則(Datenvermeidung),應予維持。因此資料保護基本規則中,須清楚詳盡地規定節約原則和資訊避免原則。 2.目的明確性原則的要求不能退縮 目的明確性原則(der Grundsatz der Zweckbindung)之功能,係為資料處理之透明性和可預見性,該原則亦強化了當事人的資訊自主權,使其得以信賴個人資料之處理,僅限於所申請之目的內進行。 故若依理事會建議之規範,使資料處理目的之變更,得以更寬泛的理由進行,將背棄歐盟基本權利憲章中之目的明確性原則。 3.即令個人同意書亦不得拋棄資訊主權 資訊自決權,意謂原則上個人可以用同意的方式,決定個人資訊的使用和拋棄。但即使有清楚明確的意思表示,該同意亦僅係保障資訊主權的重要因素之一。另就同意書而言,若如歐盟部長理事會所建議者,只需清楚明確即可,則這種方式於保護上是不夠充分的。 4.個人資料建檔必須有效地限制 該會議重申,嚴格規範對個人資料的蒐集有其必要性。為個人檔案之整合與充分使用設置嚴格的界限,現有規定太過簡略而遭到批評。 5.有效的資訊保護需要歐盟層級的企業與官署的資料保護專員 對於資訊保護監督的有效性,在德國已確立之官方與私人企業的資訊保護專員制度係重要之一環。應致力於歐盟層級公/私機構資訊保護專員制度在整個歐洲的推動。 6. 資訊傳輸第三國官署和法院需要更嚴格的監督 近期的隱私醜聞之後,目前亟需對歐洲公民個人資料給予更妥善的保護,以對抗來自第三國的機構。此意見書贊同歐盟議會的建議,即以第三國法院的判決和行政機關的決議,要求對個人資訊的披露,在歐盟之中僅能基於國際公約中機關互助和法律協助之規定,原則上予以承認與執行。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。