落實完善數位資料管理機制,有助於降低AI歧視及資料外洩風險

落實完善數位資料管理機制,
有助於降低AI歧視及資料外洩風險

資訊工業策進會科技法律研究所
2023年07月07日

近年來,科技快速發展,AI(人工智慧)等技術日新月異,在公私部門的應用日益廣泛,而且根據美國資訊科技研究與顧問公司Gartner在2023年5月發布的調查指出,隨著由OpenAI開發的ChatGPT取得成功,更促使各領域對於AI應用的高度重視與投入[1],與此同時,AI歧視及資料外洩等問題,亦成為社會各界的重大關切議題。

壹、事件摘要

目前AI科技發展已牽動全球經濟發展,根據麥肯錫公司近期發布的《生成式人工智慧的經濟潛力:下一個生產力前沿(The next productivity frontier)》研究報告指出,預測生成式AI(Generative AI)有望每年為全球經濟增加2.6兆至4.4兆的經濟價值[2]。同時在美國資訊科技研究與顧問公司Gartner對於超過2500名高階主管的調查中,45%受訪者認為ChatGPT問世,增加其對於AI的投資。而且68%受訪者認為AI的好處大於風險,僅有5%受訪者認為風險大於好處[3]。然而有社會輿論認為AI的判斷依賴訓練資料,將可能複製人類偏見,造成AI歧視問題,而且若程式碼有漏洞或帳戶被盜用時,亦會造成資料外洩問題。

貳、重點說明

首先,關於AI歧視問題,以金融領域為例,近期歐盟委員會副主席Margrethe Vestager強調若AI用於可能影響他人生計的關鍵決策時,如決定是否能取得貸款,應確保申請人不受性別或膚色等歧視[4],同時亦有論者認為若用於訓練AI的歷史資料,本身存有偏見問題,則可能導致系統自動拒絕向邊緣化族群貸款,在無形之中加劇,甚至永久化對於特定種族或性別的歧視[5]

其次,關於資料外洩問題,資安公司Group-IB指出因目前在預設情況下,ChatGPT將保存使用者查詢及AI回應的訊息紀錄,若帳戶被盜,則可能洩露機敏資訊。據統計在2022年6月至2023年5月間,在亞太地區有近41000個帳戶被盜,而在中東和非洲地區有近25000個帳戶被盜,甚至在歐洲地區也有近17000個帳戶被盜[6]。另外在2023年3月時,ChatGPT除了發生部分用戶能夠檢視他人聊天紀錄標題的問題外,甚至發生個人資料外洩問題,即用戶可能知悉他人的姓名、電子郵件,付款地址,信用卡到期日及號碼末四碼等資料[7]

參、事件評析

對於AI歧視及資料外洩等問題,應透過落實完善數位資料治理與管理機制,以降低問題發生的風險。首先,在收集訓練資料時,為篩選適合作為模型或演算法基礎的資料,應建立資料評估或審查機制,減少或避免使用有潛在歧視問題的資料,以確保分析結果之精確性。

其次,不論對於訓練資料、分析所得資料或用戶個人資料等,均應落實嚴謹的資料保密措施,避免資料外洩,如必須對於資料進行標示或分類,並依照不同標示或分類,評估及採取適當程度的保密措施。同時應對於資料進行格式轉換,以無法直接開啟的檔案格式進行留存,縱使未來可能不慎發生資料外洩,任意第三人仍難以直接開啟或解析資料內容。甚至在傳送帳戶登入訊息時,亦應採取適當加密傳送機制,避免遭他人竊取,盜取帳戶或個人資料。

財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境完善,於2021年7月發布「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,完整涵蓋數位資料的生成、保護與維護,以及存證資訊的取得、維護與驗證的流程化管理機制,故對於不同公私部門的AI相關資料,均可參考EDGS,建立系統性數位資料管理機制或強化既有機制。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1]Gartner, Gartner Poll Finds 45% of Executives Say ChatGPT Has Prompted an Increase in AI Investment (May 3, 2023), https://www.gartner.com/en/newsroom/press-releases/2023-05-03-gartner-poll-finds-45-percent-of-executives-say-chatgpt-has-prompted-an-increase-in-ai-investment (last visited June 30, 2023).

[2]McKinsey, The economic potential of generative AI: The next productivity frontier (June 14, 2023), https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#introduction (last visited June 30, 2023).

[3]Gartner, supra note 1.

[4]Zoe Kleinman, Philippa Wain & Ashleigh Swan, Using AI for loans and mortgages is big risk, warns EU boss (June 14, 2023), https://www.bbc.com/news/technology-65881389 (last visited June 30, 2023).

[5]Ryan Browne & MacKenzie Sigalos, A.I. has a discrimination problem. In banking, the consequences can be severe (June 23, 2023), https://www.cnbc.com/2023/06/23/ai-has-a-discrimination-problem-in-banking-that-can-be-devastating.html (last visited June 30, 2023).

[6]Group-IB, Group-IB Discovers 100K+ Compromised ChatGPT Accounts on Dark Web Marketplaces; Asia-Pacific region tops the list (June 20, 2023), https://www.group-ib.com/media-center/press-releases/stealers-chatgpt-credentials/ (last visited June 30, 2023).

[7]OpenAI, March 20 ChatGPT outage: Here’s what happened (Mar. 24, 2023),https://openai.com/blog/march-20-chatgpt-outage (last visited June 30, 2023).

你可能會想參加
※ 落實完善數位資料管理機制,有助於降低AI歧視及資料外洩風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9013&no=66&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
監視器無鉛製程 冠捷導入

  歐盟RoHS、WEEE政策實施在即,出身歐洲第一大品牌的飛利浦(Philips)率先響應,今年所有LCD監視器符合RoHS全面無鉛化,代工夥伴冠捷(AOC)隨第二季正式合併飛利浦顯示器事業部,也將導入無鉛製程。國內兩大LCD監視器製造大廠明基、光寶也已防患未然,製程無鉛化製程提早開跑。    飛利浦今年在台灣LCD監視器策略,其中之一是全面推展無鉛化產品線,W、P、B、S四大系列全面符合歐盟RoHS規定,鉛含量在○‧一%(1000ppm)以下,可說領先各品牌率先推出無鉛產品。    監視器製造大廠冠捷(AOC)已和飛利浦已簽訂顯示器事業部併購意向書,第二季起將正式啟動合併機制,而飛利浦在台灣僅留下採購、行政、台灣行銷業務部門。因此這套無鉛製程,也將如期導入至AOC的產線之中。至於國內製造大廠光寶、明基也已如期順利切換到無鉛製程。光寶目前綠色採購達成率已約七成,今年底則將達九成,因應製程無鉛化需要,還添購五部X光檢測設備,以期達到滴水不漏效果;至於明基明年起工廠端也不再生產舊款機種,一律符合無鉛化作業。    儘管無鉛製程難度相當高,不過對LCD監視器而言,挑戰最高卻是無汞化,因為冷陰極管(CCFL)內必含汞,所以歐盟規定裡則將CCFL燈管、投影機燈泡列為例外條款,不過隨著環保意識抬頭,LCD監視器業者已有以LED背光模組取代冷陰極管(CCFL)計畫。

歐洲專利局拒絕以AI為發明人的專利申請

  歐洲專利局於2019年12月20日,拒絕受理兩項以人工智慧為發明人的專利申請,並簡扼表示專利上的「發明人」以自然人為必要。另於2020年1月28日發布拒絕受理的完整理由。   系爭兩項專利均由英國薩里大學教授Ryan Abbott(下稱:專利申請人)的團隊申請,並宣稱發明人是「DABUS」。DABUS並非人類,而是一種類神經網路與學習演算法的人工智慧,由Stephen Thaler教授發明並取得專利。專利申請人先於2019年7月24日將自己定義為DABUS的雇主並遞出首次專利申請,再於2019年8月2日改以權利繼受人名義申請(Successor in Title)。專利申請人強調系爭申請是由DABUS發明,且DABUS在人類判定前,即自我判定其想法具新穎性(identified the novelty of its own idea before a natural person did)。專利申請人認為該機器應可以被視為發明人,而機器的所有人則是該機器創造出的智慧財產權之所有人─這樣的主張是符合專利系統的主旨,給予人們揭露資訊、商業化和進行發明的動機。申請人進一步強調:承認機器為發明人可以促進人類發明人的人格權和認證機器的創作。   在經過2019年11月25日的聽證程序(Oral Proceedings)後,歐洲專利局決定依《歐洲專利公約》(European Patent Convention)Article 81, Rule 19 (1)駁回申請。歐洲專利局強調,發明人必須是自然人(Natural Persons)是國際間的標準,且許多法院曾經對此做過相應的判決。再者,專利申請必須強制指定發明人,因為發明人需要承擔許多法律責任與義務,諸如取得專利權後衍生的法律權利。最後,雖然Article 81, Rule 19 (1)規定發明人應該要附上姓名與地址,但單純幫一個機器取名字,並不會使之符合《歐洲專利公約》的發明人要件。歐洲專利局強調,從立法理由即可知道,《歐洲專利公約》的權利主體僅限自然人和法人(Legal Persons)、專利申請的發明人僅限自然人。歐洲專利局表示,目前AI系統或者機器不具有權利,因為他們沒有如同自然人或法人一樣的人格(Legal Personality)。自然人因為生命而擁有人格,而法人的法人格來自於法律擬制(Legal Fiction)。這些法律擬制的人格來自於立法者的授權或者眾多司法判決的演進,而AI發明者是不具有此般的法律擬制人格。

歐盟公布資料保護相關指令適用意見書

  由歐盟二十七個會員國資料保護主管機關組成的第二十九條資料保護工作小組(The Article 29 Working Party)最近公布其應適用何國資料保護法規之意見書。   歐盟資料保護指令(EU Data Protection Directive)第四條對於蒐集或處理個人資料所應適用之法規有所規範,依該條規定,機構必須依其成立之國別適用該國資料保護法規;機構若於其他國家裝置設備處理資料,則須遵守設備所在地之法令。   隨著全球化的趨勢與新興科技的發展,目前處理資料機構之運作方式已與當初制定指令時有所不同,許多機構在世界各國設置營運點,向全球各地提供各類型服務,尤其是網際網路的發展,使得遠端服務及在虛擬環境下分享個人資訊更為容易,但同時也增加辨識資料處理所在地之困難度,因此工作小組提出該意見書,希望藉此釐清資料保護指令第四條之適用。   工作小組於該意見書中指出,資料保護指令所指的應適用法規,並非資料控制者(data controller)所在地之法規,而是附屬於該資料控制者並實質進行資料處理之機構的所在地法規。蓋因同一資料控制者可能在數國成立附屬機構,在此種狀況下判別適用法規的標準,應視實際上相關資料處理活動的發生地,亦即處理資料機構所在地。   而針對處理個人資料所使用之設備,工作小組表示,即使處理資料之機構並未擁有設備,而使用該設備處理個人資料時,亦可適用指令第四條之規定,需遵守設備所在地之相關法規;但工作小組同時特別釐清,以電信電纜或郵政服務等方式傳輸資料並不會落入資料保護法規之範疇。

英國Royal Free國家健康服務基金信託與Google DeepMind間的資料分享協議違反英國資料保護法

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2017年7月公告Royal Free國家健康服務基金信託(Royal Free London NHS Foundation Trust)與Google人工智慧研究室DeepMind之間的資料分享協議,違反資料保護法(Data Protection Act)。   該協議之目的在使DeepMind利用Royal Free所提供的醫療資料,開發一款名為Streams的應用程式,透過人工智慧系統分析得知病患惡化之情況,並以手機警示方式通知臨床醫生。由於涉及病患的可識別個人資料且人數多達160萬人,協議的合法性,尤其在資料分享是否經病患同意方面,受到質疑。   Royal Free與DeepMind主張因應用程式是直接對病患進行醫療照護,具有病患默示同意(implied consent)之正當基礎,且資料經加密後才傳給DeepMind。惟經ICO調查結果如下: 就資料將被使用作為應用程式測試一事,病患未獲充分告知亦無合理期待; 雖執行隱私影響評估,惟僅於資料傳給DeepMind後才進行,無法發揮事前評估作用; 應用程式尚在測試階段,無法說明揭露160萬病患紀錄的必要性與手段合理性。   目前Royal Free已承諾改進以確保其行為合法性。ICO之認定突顯創新不應以「減損法律對基本隱私權保障」作為代價。

TOP