澳洲發布國家身分韌性戰略

所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。

為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。

該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。

相關連結
你可能會想參加
※ 澳洲發布國家身分韌性戰略, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9053&no=57&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
科法觀點
你可能還會想看
日本內閣通過AI研發及活用推進法草案

日本內閣於2025年2月28日通過並向國會提出《人工智慧相關技術研究開發及活用推進法案》(人工知能関連技術の研究開発及び活用の推進に関する法律案,以下簡稱日本AI法),旨在兼顧促進創新及風險管理,打造日本成為全球最適合AI研發與應用之國家。規範重點如下: 1. 明定政府、研究機構、業者與國民之義務:為確保AI開發與應用符合日本AI法第3條所定之基本原則,同法第4至第9條規定,中央及地方政府應依據基本原則推動AI相關政策,研發法人或其他進行AI相關研發之機構(以下簡稱研究機構)、提供AI產品或服務之業者(以下簡稱AI業者)及國民則有配合及協助施政之義務。 2. 強化政府「司令塔」功能:依據日本AI法第15條及第17至第28條規定,日本內閣下應設置「AI戰略本部」,由首相擔任本部長,負責制定及推動AI基本計畫,統籌推動AI技術開發與應用相關政策,並促進AI人才培育、積極參與國際交流與合作。 3. 政府調查及資訊蒐集機制:為有效掌握AI開發、提供及應用狀況,防止AI應用侵害民眾權益,日本AI法第16條規定政府應蒐集、分析及調查國內外AI技術研發及應用趨勢,並得基於上述結果,對研究機構或AI業者採取指導、建議或提供資料等必要措施。

美國商務部提出CHIPS護欄條款,對受補助者實施限制以維護國家安全

美國商務部於2023年3月21日對《晶片與科學法》(CHIPS Act)獎勵計畫中的國家安全護欄條款(guardrails)提出法規草案預告(Notice of Proposed Rulemaking, NPRM),並對外徵詢公眾意見,確保美國和盟友間的技術協調合作,促進共同國家安全利益。CHIPS作為國家安全倡議,以重建和維持美國在全球半導體供應鏈中的領導地位為目標,並確保CHIPS所補助的資金及尖端技術,不會直接或間接使中華人民共和國、俄羅斯、伊朗和北韓等特定國家受益或用於惡意行為,若CHIPS受補助者參與限制交易,政府可以收回全部資金補助。護欄條款對受補助者實施限制說明如下: 1.限制在特定國家擴張先進設施:自獲得補助起10年內,禁止對特定國家或地區的尖端和先進半導體設施為重大投資、協助擴大半導體製造能力。投資金額達100,000美元定義為重大交易,將設施生產能力提高5%為擴大半導體製造能力。 2.限制在特定國家擴建傳統設施:禁止在特定國家擴充半導體新生產線或將傳統半導體設施的生產能力擴大超過10%。若半導體設施的產出「主要服務」於該國國內市場(超過85%),則允許建造新的傳統設施,但最終產品只能在該國家或地區銷售。 3.半導體屬對國家安全至關重要項目:擬將一系列晶片歸類為涉及國家安全,並與國防部和情報局協商制訂清單管制,包括用於量子運算、輻射密集環境,和其他專業軍事能力的新進和成熟製程晶片。 4.加強美國出口管制:透過出口管制和CHIPS國家安全護欄條款,調整對儲存晶片的技術門檻限制並加強控制。對邏輯晶片應用,會設定比出口管制更加嚴格的門檻。 5.限制聯合研究和技術授權:限制與特定外國實體就引起國家安全問題的技術或產品進行聯合研究和技術授權工作。聯合研究定義為由兩人或多人進行的任何研究和開發,技術授權為向另一方提供專利、營業秘密或專屬技術的協議。

澳洲政府考量開放民事訴訟領域查閱網路服務商所保存之通訊資料

  澳洲政府於2014年推動電信(監察及查閱)法修正(資料保存)案(Telecommunications (Interception and Access)Amendment (Data Retention) Bill 2014),增訂資料保存規範,其目的在於打擊重大犯罪、恐怖主義、國際組織犯罪等,其措施為要求國內網路服務商須保留用戶之通訊資料,並保存期間至少2年,對此,當時情報及保安事務議會聯合委員會(下稱委員會)於評估該修正案時,卻發現一項爭議問題,即民事訴訟當事人亦得查閱通訊資料,但資料保存行為之正當性乃立基於維護國家安全,實與民事訴訟制度意義相悖,故委員會提出應排除民事訴訟領域得以查閱通訊資料之建議。   澳洲政府對於委員會所提出之建議採取全盤接受之態度,進而重新修訂2014年電信(監察及查閱)法修正(資料保存)案,且併同修正刪除1997年電信法令第280條,有關得以民事訴訟傳票或命令,向網路服務商查閱其所保存之通訊資料;至於網路服務商之通訊資料保存義務方面,仍須依1979年電信(監察及查閱)法為之。前述修正於2017年4月13日生效。   然而,澳洲政府方面時至今日卻有態度轉變之趨勢,起因於通訊部長與檢察總長於2016年12月20日公告,其認為資料保存措施對於特定類型之民事訴訟並非沒有實益,如:維護智慧財產權事件、家庭事件(如:離婚)或勞工權益事件(如:公司起訴勞工)等,故應視類型或個案情形予以開放查閱;因此,主管機關提出三項問題向社會大眾徵求意見:1、民事訴訟當事人在何種情形下可查閱通訊資料;2、倘若民事訴訟當事人不得查閱通訊資料者,對於民事訴訟會產生何種影響;3、是否有特定之民事訴訟類型,是排除1997年電信法第280條(1B)不適用。   實際觀察澳洲政府所推動之該項公告,在其國內爭議相當大,不僅該項公告已臨近前述修正生效日,且開放民事訴訟當事人得以查閱通訊資料之正當性疑慮仍未解除,甚且,亦與近期國際上國家安全與人民隱私權保障間之衝突日趨顯著,如:英國之調查權力法案(Investigatory Powers Act. 2016)不無關聯,因此,澳洲政府是否願意在社會輿論反對聲浪中,仍維持該項公告修正意向,值得後續觀察。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP