日本經產省發布中小企業開發IoT機器之產品資安對策指引

日本經濟產業省(下稱經產省)於2023年6月6日發布中小企業開發IoT機器之產品資安對策指引(IoT機器を開発する中小企業向け製品セキュリティ対策ガイド),本指引彙整企業應該優先推動IoT機器資安對策,經產省提出具體資安對策如下:

1.制定產品資安政策(セキュリティポリシー)並廣為宣導:由企業經營者率先制定資安政策,進行教育宣導,並依實際需求修正調整。

2.建立適當的資安政策體制:確立實施資安政策必要之人員及組織,明確其職務及責任。

3.指定IoT機器應遵守之資安事項,並預測風險:決定IoT機器的預設使用者及使用案例,並於釐清使用者需求後,指定IoT機器應遵守之資安事項,預測衍生風險。

4.考量IoT機器應遵守之資安事項及預測風險,進行設計與開發:以預設IoT機器應遵守之資安事項衍生風險為基礎,從設計與開發階段開始採取風險對策。

5.檢測是否符合資安相關要件:從設計與開發階段開始制定檢測計畫,檢測是否符合資安要件,並依據檢測結果進行改善。

6.於產品出貨後蒐集風險資訊,與相關人員溝通並適時提供支援:蒐集全球資安事故與漏洞資訊,並設置可適時與委外廠商以及用戶溝通之窗口。

相關連結
你可能會想參加
※ 日本經產省發布中小企業開發IoT機器之產品資安對策指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9063&no=57&tp=1 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
歐盟公布「朝向現代化著作權架構行動計畫」,研議推動措施及規範調修規劃

  歐盟執委會在2015年12月9日提出歐盟朝向現代化著作權架構行動計畫(Towards a modern, more European copyright framework),目的為落實歐盟數位單一市場策略(Digital Single Market Strategy),對於創意產業能夠激勵投資,並且打造公平的競爭環境。行動計畫分為四項重點:   一、放寬歐盟地區內容取得服務: 歐盟已針對線上服務內容如影音、遊戲等,提出草案,未來將允許線上服務內容可以跨境取得,不受地區性之限制,範圍僅限於歐盟會員國地區。歐盟亦將利用創意歐洲計畫持續鼓勵創意產業發展,增加更多使用服務之民眾。   二、放寬著作權相關免責規範之適用: 未來歐盟將修正規範,使研究人員就資料內容之取得與利用更為便利。此外,教育為另外一項重點,例如應訂有明確使用線上內容做為教學之規範。在身障者保護部分,則亦應設立規範。   三、創造公平市場: 歐盟將評估線上作品之使用與分享是否為公平授權,且未來將首先針對新聞服務業者進行檢討,對於使用者在網路上單純分享作品連結者,將視為合理使用。另外,針對作者與表演者報酬部分,歐盟未來將有一致性之政策規範標準。   四、打擊盜版: 歐盟認為,新政策的執行將使著作物能經過合理管道使用,因此可抑制盜版行為。而在2016年預計進行之“follow the money”計畫,預計與使用者及權利人相互配合,阻斷盜版所產生之資金流動。   未來,歐盟預計於六個月內將此架構願景轉換為草案或政策推動方針,其中在允許線上服務內容可以跨境取得之草案規範部分,歐盟執委會則希望於2017年能正式生效施行。

為促進單一數位市場之發展,歐盟展開個人資料保護法規之改革

  網路和數位科技正急速翻轉我們的世界,建立「歐盟單一數位市場」(EU Digital Single Market)為歐盟執委會的首要優先政策項目之一,發展健全的單一數位市場可為歐盟增加4,150億之經濟成長,創造數以萬計的新工作機會,實現一個充滿活力的知識型社會。然服務的「上網」仍存在一定程度尚未跨越之障礙;根據調查,超過90%的歐洲人擔憂他們所使用的行動應用程式(apps)沒有經過他們的同意即蒐集其個人資料。使用者對網路服務欠缺信任,產業以及政府亦無法充分透過數位科技工具獲益,因此如何提升人民對於網路服務的信任成為歐盟官方當前重要議題。   為解決此問題,歐盟執委會已著手進行個人資料保護法規的改革,針對現行的資料保護法規提出新修法案,主要目標在加強人民於個人資料保護之相關權益,以降低使用者個人隱私遭洩漏的疑慮,此外也將對企業帶來諸多利多。新修法案針對人民權益保障的加強,包括: 1.被遺忘權(A right to be forgotten):已明文規定於現行歐盟資料保護法規,新修法案將更進一步強化個人被遺忘權的行使-尤其是青少年。對此歐盟理事會表示贊同,但亦強調被遺忘權並非絕對之權利,不應凌駕於言論自由以及新聞自由之上。 2.資料可攜帶權(A right to data portability):使用者可更輕易的移轉其個人資料於不同的網路服務提供者之間。 3.個資被駭之被告知權:若網路服務提供者發生嚴重個資洩漏事件必須盡快告知主管機關,讓使用者得採取適當措施。 4.個資保護措施優先:強調在服務或產品早期開發階段就應該優先考量個人資料保護措施的設計,取代事後補救的觀念;尤其社交網路服務或行動apps相關服務的開發,隱私默認的設定應為預設之常態。   新修法案也包含多項對相關企業有利之措施,例如: 1.一歐陸一法律:企業在歐盟經濟區域遵行單一之歐盟資料保護法規,而非28國不同法規,預估每年可節省23億歐元之遵法成本。 2.單一監管窗口:整合28國主管機關以建立單一對外監管窗口,讓欲經營歐盟市場的企業與主管機關的交涉能更簡單、有效率。 3.參與歐盟市場之企業皆遵守相同標準法規(European rules on European soil):依現行歐盟法規,設籍於歐盟境內之企業必須遵守比境外企業更嚴格的法規標準,故新修法案極力建立公平競爭環境,經營歐盟市場之企業不論是否設籍於歐盟皆等同對待。 4.簡化繁文縟節之行政規定:新修法案刪除了企業通知主管機關等不必要之繁文縟節要求,此尤其利於中小企業節省行政成本。 5.免除中小企業進行個資影響評估之責任:除非有明確顯見之風險,始課予中小企業個資影響評估之責任。   歐盟執委會、理事會與議會於2015年6月開始針對資料保護法規新修法案進行三邊協商,預計於2015年底完成最終之協議。

美國上訴法院推翻FCC對廣電節目猥褻言論之認定

  美國紐約第二巡迴法院上訴法院於2007年6月5日做出判決,認定FCC對於廣電節目是否違反猥褻言論規範之判斷標準為恣意專斷(arbitrary and capricious)的決定。此一案件起因於福斯電視台轉播2002年及2003年音樂告示排行榜頒獎典禮(Billboard Music Awards)時,歌手Cher及名人Nicole Richie分別在典禮中說出不雅言詞,事後FCC認定福斯電視台之轉播違反廣電節目之猥褻言論相關規範。福斯電視台對於FCC之認定不服,因而向法院提起訴訟。   依照過去FCC對猥褻言論之認定標準來看,「瞬間之咒罵言詞」(fleeting expletives)並不屬於猥褻言論,廣電節目中播出相關內容並不違反猥褻言論之管制規範。但自2003年起,FCC改變認定標準,認為所有不雅言詞均不可避免地帶有性暗示之內涵,因此廣電節目中凡涉及不雅言論之內容都是猥褻言論。   根據紐約第二巡迴法院上訴法院之判決指出,FCC的決定毫無疑問地改變了對於廣電節目是否違反猥褻言論規範之認定標準,且FCC對於改變認定標準一事所提出的理由並不具有說服力;FCC於訴訟過程中亦承認,即便在決定改變認定標準前,也沒有證據顯示廣播電視台曾密集播送充滿咒罵言論之內容。因此,紐約第二巡迴法院上訴法院認為,FCC改變認定標準一事乃是恣意專斷的決定,從而撤銷FCC對於福斯節目之認定。對於法院之判決,FCC主席Kevin Martin表示遺憾以及難以置信,將會委請律師研議是否繼續上訴最高法院。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP