日本內閣府組成「AI時代的智慧財產權研討小組」,由東京大學副校長渡邊敏也作為主席於今(2023)年10月4日召開首次會議,為討論生成式AI(人工智慧)發展帶來的智慧財產權問題。討論主題包括法規範現況、在人類參與有限的情況下由生成式AI所產出之發明是否可以申請專利等,目標於年底前彙整、蒐集企業經營者待解決議題。亦將從其他法律的角度進行討論,例如:AI模仿商品形態是否亦受到日本《不正競爭防止法》之拘束;AI與專利之間的關係,依據日本《專利法》,專利權目前僅授予個人參與創造過程的發明,隨著AI技術的發展,預計會出現難以做出決策的情況,將討論諸如取得專利所須的人類參與程度等問題;以及擁有大量資料的權利持有者向AI開發者提供有償資料的優缺點。與會專家表示,希冀看到從鼓勵利用AI進行新創作和發明之角度出發。日本文化廳和其他相關組織亦同步討論AI生成的作品,若與現有之受著作權保護的作品相似時是否會侵害著作權之議題。
日本內閣府早先於今年5月公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理),我國行政院於今年8月31日正式揭示國科會擬定之「行政院及所屬機關(構)使用生成式AI參考指引」草案,我國經濟部智慧局亦規劃研擬就AI生成物是否享有著作權或專利權、訓練資料合理使用範圍、企業強化營業秘密保護等3大面向建立AI指引,國內外AI相關指引議題均值得持續追蹤瞭解。另,企業無論是擔憂AI技術成果外洩、不慎侵害他人智財權或智財成果被生成式AI侵害之虞等,因應數位化趨勢與數位證據保全而應強化相關管理措施,資策會科法所發布之《營業秘密保護管理規範》、《重要數位資料治理暨管理制度規範(EDGS)》協助企業檢視自身管理措施之符合性並促進有效的落實管理。
本文同步刊登於TIPS網(https://www.tips.org.tw)
日本厚生勞動省、經濟產業省和總務省共同於2021年2月19日公布「有關民間個人健康紀錄(Personal Health Record, PHR)業者蒐集、處理、利用健康資料之基本指引」(民間PHR事業者による健診等情報の取扱いに関する基本的指針)草案,檢討民間PHR業者提供PHR服務之應遵守事項,希望建立正確掌握和利用個人、家族健康診斷或病例等健康資料之電子紀錄制度。 本指引所稱之「健康資料」,係指可用於個人自身健康管理之敏感性個人資料,如預防接種、健康診斷、用藥資訊等;而適用本指引之業者為蒐集、處理、利用上開健康資料並提供PHR服務之業者。根據指引規定,PHR業者應針對資訊安全對策、個人資料處理、健康資料之保存管理和相互運用性及其他等4大面向採取適當措施。首先,在資訊安全對策部份,業者需取得風險管理系統之第三方認證(如資訊安全管理系統制度(ISMS));其次,針對個人資料,業者應制定隱私政策和服務利用規約,並遵守個資法規定;然後,為確保健康資料之保存管理和相互運用性,系統應具備雙向資料傳輸之功能;最後,本指引提供檢核表供業者自行檢查,業者亦應在網站上公佈自行檢查結果。
健康食品的管理法規 英國上議院正逐條審議資料保護和數位資訊法案,期展現脫歐新格局英國科學、創新和技術部(Department for Science, Innovation & Technology)提出之《資料保護和數位資訊法案》(The Data Protection and Digital Information Bill,以下稱DPDI法案)於2023年11月經下議院三讀後移交上議院,並於2024年3月20日起逐條審議。DPDI法案旨在調整由英國《一般資料保護規則》(UK General Data Protection Regulation, 下稱UK GDPR)、《資料保護法》(Data Protection Act, DPA 2018)與《隱私與電子通訊規則》(Privacy and Electronic Communications (EC Directive) Regulations 2003)建構之資料保護框架,形塑有別於歐盟典範的資料保護制度。 下議院三讀通過之DPDI法案包含:個人資料保護、數位核驗服務、消費者與商業等各類數據使用以及監管制度等,期能增加資料使用彈性、衡平保護與運用之衝突。該法案將釐清與重新定義資料保護之一般性通則,以下就部分變革與爭議簡要說明: 一、資料使用限制放寬:藉擴大正當利益(legitimate interest)意涵與科學研究範圍,擴大個人資料使用的正當性基礎,如國安、犯罪預防、公共衛生及商業與非商業性科學研究。 二、組織資料治理層級轉變:取消資料保護長設置,改為指派高階管理層之一人專任或多人兼任高階負責人。 三、監管機構變換:將現行資訊專員辦公室(Information Commissioner’s Office, ICO)獨立機構監管模式,轉換為政府任命之委員會。 四、資料傳輸規範可能不足:英國脫歐後,其與歐盟間的資料傳輸經認可而獲維繫。若DPDI法案通過並調整且簡化資料傳輸規範,英國可能需證明新程序及規範持續具有保護適足性。 就DPDI法案內容觀之,該法案主要建構於UK GDPR及相關規範之刪修,象徵英國政府對脫歐前資料保護制度之檢討,並期藉改革減輕企業合規成本。然,部分團體認為資料使用放寬與保護制度之變革,可能導致演算法歧視以及英國與歐盟間資料流動困難。雖DPDI法案尚在上議院委員會討論階段,可能因各方磋商而修改條文內容,但仍可見英國政府積極重新伸張國家主權之作為。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。