世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。 為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。 The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。
歐盟啟動2030年提升建築能源效率合作創新研究為有效達成「歐洲2020策略」以及「歐洲2050減碳」等政策目標,由歐盟所補助設立的歐洲建築科技平台(European Construction Technology Platform, ECTP) 其下能源效率建築協會(Energy Efficient Buildings Association, E2BA),於今年度 (2012) 7月份正式對外發布首份創新研究報告「前瞻建築能源效率之研究–創新及公私部門合作」(Energy-efficient Buildings PPP beyond 2013)。該研究報告開宗明義指出,將規劃於2030年透過創新模式,及公私部門合作之落實,建立一個創新高科技能源效率產業,達到建築物碳中和(Carbon Neutral)、提昇產業技術、創造新工作機會以及落實智慧城市計畫等目標。 本研究報告係從「市場」(Market)的角度出發,嘗試提出具可行性之商業模型(Business model),供決策者參考。有鑒於建築產業在能源消耗及碳排放量占有很大的比例,該報告即指出對於既有建築物翻新與整修之急迫性,也認為應該透過政府部門介入,推動相關措施,並導引民間持續落實。其次,於產業評估效益方面,該報告明確指出,透過提昇建築能源效率,將創造許多新的就業機會,帶動地方經濟發展。綜上,歸納二點供參考,第一,為達成長期能源效率提升之目標,公部門將寄出管制手段並設置公共基金(Public funding),以防止產業市場失靈,有其必要性;第二,產業等實務運用契約型態將歷經質變,長期性的節能績效保證契約(Long-term energy performance guaranteed contract)將被越來越常被引用。 適逢歐洲議會通過能源效率指令(Energy Efficiency Directive),指令中第四條係針對公有建築物翻新之規範條款,對此歐盟會員國已陸續檢討各自國內推動現況,但目前各國仍面對許多問題及挑戰,例如既有建築物翻新整修,一直無法有效提昇件數,以及投入資金過於龐大等等因素,除非政府展現積極介入的決心,支持及並投入資金協助推動,否則成效仍可能維持停滯不前的困,相關趨勢發展值得後續觀察。
Google提供免費大量的專利及商標資料美國專利商標局(下稱USPTO)於6月2日和Google簽訂一協議,為期兩年Google將免費協助USPTO提供超過10TB(terabytes)大量的專利及商標相關資訊,提供使用者一次下載大量資料。其下載網站為http://www.google.com/googlebooks/uspto.html,該網站載明,所有的原始資料都來自於USPTO,Google未修改任何資料,只將檔案轉為zip壓縮檔。 早期專利及商標的資料是由使用者付費後方可由政府的DVD取得,所以公司往往花費龐大的費用在於取得所需要的資料。 USPTO表示,IP群體渴望USPTO可提供大批機器可閱讀的格式,然而USPTO未具備相關的技術能力。目前此協議是過渡的解決方案,USPTO正發展策略,希望未來能讓合作承包商獲得大量專利商標相關資料,並提供給大眾使用。 Google工程經理Jon Orwant表示,Google非常高興能與USPTO合作,以促進專利及商標資料更具存取性(accessible)及有用性,更重要的為,使公開的資料更容易蒐集與分析。 為可經由Google下載相關專利及商標資料,包括已獲證圖像(grant images),已獲證全文(grant full text),已獲證目錄資料(grant bibliographic data),已公開申請案(published applications),轉讓(assignment),維護費用事項(maintenance fee events),USPTO Red Book及分類資料(classification information)等。USPTO表示,未來將與Google再合作提供額外的資料,包括專利及商標申請歷史檔案及其相關資料。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」