世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
自2011年歐巴馬政府頒布《食品安全現代化法》(Food Safety Modernization Act, FSMA)以來,美國食品藥物管理局(Food and Drug Administration, FDA)研擬多項配套法規和施行細則藉以強化FSMA食品安全標準之具體落實。此外,為形成產業、工協會各方之修法共識,FDA開啟為期一年之意見徵集期間。另於今年度(2013)11月15日,美國全國農民工會(National Farmers Union, NFU)正式向美國食品藥物管理局提交食品安全現代化法案(Food Safety Modernization Act, FSMA)具體意見書,該項意見書要點歸納如下: 1.全國農民工會表示此修法方向,有助於事前預防食源性疾病(foodborne illness)擴散與食品風險之控管,有效達成法規建構之目的。 2.由於配套法規涉及食品鏈供應商、農民與生產者之具體責任,建議政府應評估多階段意見諮詢期(comment period)之規劃,廣納各利益相關者具體建議。 3.全國農民工會針對農業用水的品質標準、檢測措施與規範提出不同之見解,亦建議縮短農產品禁用生物土壤改良劑的時間。
區塊鏈技術運用於智財保護區塊鏈技術具有去中心化、透明性、開放性、自治性、訊息不可篡改、匿名性等六大特徵,可加密記錄該系統上所有使用者之行為資訊,並使該資訊不易篡改。其最初被運用在虛擬貨幣比特幣(Bitcoin)的建構,發展至今應用已拓展至諸多領域,包括對智慧財產權的保護。美國的blockai網站即是將區塊鏈技術運用於智財保護的實例之一,美國過去由國會圖書館負責著作權之管理之作法,在程序上曠日費時且效率不彰,故blockai於2015年創立於美國舊金山,旨在提供著作人更簡單有效的選擇。其作法係由著作人於blockai註冊帳號後進行作品之註冊並取得一相應之著作權證書,並由blockai以區塊鏈技術建立公眾資料庫,透過區塊鏈不可篡改、透明開放等技術特徵來證明作品確由著作人創作,利於後續舉證維權。現階段blockai開立之證書雖未被授與法律上地位,但依區塊鏈的技術特徵,可望成為法庭攻防上著作人有力之科學證據。 揆諸我國相關法律,我國非採著作登記制,著作人為維護自身權利需先證明系爭著作為自己所創作,惟訴訟實務上著作人多半舉證不易。若參考美國作法導入區塊鏈技術落實著作權保障,或可作為科技整合法律之新標竿。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
歐盟資料保護工作小組修正通過GDPR個人資料當事人同意指引因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或譯為一般資料保護規則,下簡稱GDPR)執法之需,針對個人資料合法處理要件之一當事人「同意」,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年4月10日修正通過「當事人同意指引」(Guidelines on consent under Regulation 2016/679),其中就有效同意之要件、具體明確性、告知、獲得明確同意,獲有效同意之附加條件、同意與GDPR第6條所定其他法定要件之競合、兒少等其他GDPR特別關切領域,以及依據指令(95/46/EC)所取得之當事人同意等,均設有詳盡說明與事例。 GDPR第4條第11項規定個人資料當事人之同意須自由為之、明確、被告知,及透過聲明或明確贊成之行為,就與其個人資料蒐集、處理或利用有關之事項清楚地表明其意願(unambiguous indication)並表示同意。殊值注意的是,如果控制者選擇依據當事人同意為任何部分處理之合法要件,須充分慎重為之,並在當事人撤回其同意時,即停止該部分之處理。如表明將依據當事人同意進行資料之處理,但實質上卻附麗於其他法律依據,對當事人而言即顯係重大不公平。 換言之,控制者一旦選擇當事人同意為合法處理要件,即不能捨同意而就其他合法處理的基礎。例如,在當事人同意之有效性產生瑕疵時,亦不允許溯及援引「利用合法利益」(utilise the legitimate interest)為處理之正當化基礎。蓋控制者在蒐集個人資料之時,即應揭露其所依據之法定要件,故必須在蒐集前即決定其據以蒐集之合法要件為何。