世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
美國FCC於二月份表示其將檢視採取額外的安全措施,是否能夠有效防止電信公司所持有之個人敏感性資訊外洩之問題,並就與此所涉之問題與建議採取之法律措施諮詢公眾之意見。此次諮詢的議題包括目前電信公司所採取的安全措施為何、此等措施存有何種缺失、以及採取何種措施將能夠更有效地保護消費者的隱私,並就以下五種特定的安全措施,諮詢公眾之意見,包括: (1) 由消費者設定密碼。 (2) 建立一套查驗機制,此一機制必須能夠記錄消費者個人資料之接近使用情況,包括時間、接近使用的資料內容、接近使用人…等之資訊。 (3) 電信公司必須就客戶專有之網路資訊 (customer proprietary network information,CPNI)進行加密。 (4) 限制資料之保存,要求電信公司必須刪除所有不必要的資料。 (5) 當個人資料遭他非法接近使用時,電信公司應通知消費者。 除此之外,FCC亦就其是否應修改現行法規,要求電信公司應就其實施消費者保護措施之狀況,提交年度稽核報告以及全年之客訴資料進行公眾意見諮詢,並且就電信公司是否應於提供CPNI前,致電予消費者,以確保CPNI資料之索取係由消費者本人親為一事諮詢公眾之意見。
何謂「TLO」?「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。 日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。 在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。
美國商會呼籲我國政府儘速通過智財三法我國近年來對智財權保護不遺餘力,政府除祭出各種方案使智慧財產之觀念深入人心外,相關修法動作也持續進行,今年度經濟部智慧財產局更展開大規模的修法,並分別就各修正議題舉辦多場之法案公聽與說明會。諸此種種努力逐漸獲得國際間的肯定,美國政府也釋出善意,在今年初公布之二00五年三0一報告書中,特別將我國從「特別三0一優先觀察名單」中,調降為一般觀察名單。 據美國商會表示,台灣投資環境近年最大的改善,莫過於對智慧財產權的重視,以及落實智財權保障的有效執法機制。不過美國商會也認為,網路盜版猖獗及智財權案件審理費時冗長,將是台灣未來智財權保護的兩大挑戰。尤其在網路盜版方面,保智大隊前幾年查獲的案件中,只有2%與網路侵權有關,但今年到十一月底,比例上升80%,顯示網路盜版加劇,因此建議我國應加速規範P2P傳輸業者的立法,以遏止下載未經授權的音樂、影片,或其他受著作權保障的作品。 美國商會呼籲,為維持得來不易的成績,立法院應儘速在本會期通過智慧財產法院組織法草案、智慧財產案件審理法草案,及在著作權法新增技術立法,以規範P2P(網路點對點傳輸)業者等智財三項法案;與此同時,美國商會也建議未來智財法院的法官,應具備技術背景並體認國際投資競爭、偽藥及假農藥等公共衛生議題對於生技等創新產業發展之重要性。
中國大陸發明專利申請量已躍居世界第四位中國知識產權局局長田力普在「2006 年中國保護知識產權高層論壇」上表示,2005 年中國發明專利申請量居世界第四位,成為世界第十大申請國,在發展中國家排名第二。 不過,雖然中國大陸知識產權制度實施二十年來成績顯著,但是中國大陸自行研發的能力仍有待提昇。因為,2005 年中國大陸發明專利申請十七萬餘件中有近五成來自外國,而來自獨資、合資等三資企業只佔了大約六分之一。若從申請發明專利的技術程度觀察,外國人發明專利申請案集中在高科技的技術領域,而中國國內發明多集中在一般技術領域。 對照 2005 年大陸的中央企業研發投入額佔當年銷售收入的比重平均為 1.5% ,相較先進國家大型企業一般不低於銷售收入 5% 的研發費用,差距甚遠。事實上,大陸央企擁有的所有專利總數已達30520項,但這數字還不及日本佳能企業的一半。因此,大陸國資委主任李榮融表示,在中央企業負責人業績考核體系中,國資委將會加大科技投入和創新能力建設的考核力度。