歐盟「人工智慧法」達成政治協議,逐步建立AI準則

歐盟「人工智慧法」達成政治協議,
逐步建立AI準則

資訊工業策進會科技法律研究所
2023年12月25日

隨著AI(人工智慧)快速發展,在各領域之應用日益廣泛,已逐漸成為國際政策、規範、立法討論之重點。其中歐盟人工智慧法案(Artificial Intelligence Act, AI Act,以下簡稱AIA法案)係全球首部全面規範人工智慧之法律架構,並於2023年12月9日由歐洲議會及歐盟部長歷史會達成重要政治協議[1],尚待正式批准。

壹、發佈背景

歐洲議會及歐盟部長理事會針對AIA法案已於本年12月9日達成暫時政治協議,尚待正式批准。在法案普遍實施前之過渡期,歐盟執委會將公布人工智慧協定(AI Pact),其將號召來自歐洲及世界各地AI開發者自願承諾履行人工智慧法之關鍵義務。

歐盟人工智慧法係歐盟執委會於2021年4月提出,係全球首項關於人工智慧的全面法律架構,該項新法係歐盟打造可信賴AI之方式,將基於AI未來可證定義(future proof definition),以等同作法直接適用於所有會員國[2]

貳、內容摘要

AIA法案旨在確保進入並於歐盟使用之AI人工智慧系統是安全及可信賴的,並尊重人類基本權利及歐盟價值觀,在創新及權利義務中取得平衡。對於人工智慧可能對社會造成之危害,遵循以風險為基礎模式(risk-based approach),即風險越高,規則越嚴格,現階段將風險分為:最小風險(Minimal risk)、高風險(High-risk)、無法接受的風險(Unacceptable risk)、特定透明度風險(Specific transparency risk)[3]。與委員會最初建議版本相比,此次臨時協定主要新增內容歸納如下:

臨時協議確立廣泛域外適用之範圍,包含但不限於在歐盟內提供或部署人工智慧系統的企業[4]。但澄清該法案不適用於專門用於軍事或國防目的之系統。同樣,該協定規定不適用於研究和創新目的之人工智慧系統,也不適用於非專業原因之個人AI使用。

臨時協議針對通用AI(General purpose AI)[5]模型,訂定相關規定以確保價值鏈之透明度;針對可能造成系統性風險之強大模型,訂定風險管理與重要事件監管、執行模型評估與對抗性測試等相關義務。這些義務將由執委會與業界、科學社群、民間及其他利害關係人共同制定行為準則(Codes of practices)。

考量到人工智慧系統可用於不同目的之情況,臨時協議針對通用AI系統整合至高風險系統,並就基礎模型部分商定具體規則,其於投放市場之前須遵守特定之透明度義務,另強調對於情緒識別系統有義務在自然人接觸到使用這種系統時通知他們。

臨時協議針對違反禁止之AI應用,罰款金額自3,500萬歐元 或全球年營業額7%(以較高者為準)。針對違反其他義務罰款1,500萬歐元或全球年營業額3%,提供不正確資訊罰 款750萬歐元或全球年營業額1.5%。針對中小及新創企業違反人工智慧法之行政罰款將設定適當之上限。

參、評估分析

在人工智慧系統之快速發展衝擊各國社會、經濟、國力等關鍵因素,如何平衡技術創新帶來之便利及保護人類基本權利係各國立法重點。此次歐盟委員會、理事會和議會共同對其2021年4月提出之AIA法案進行審議並通過臨時協議,係歐洲各國對於現下人工智慧運作之監管進行全面的討論及認可結果,對其他國家未來立法及規範有一定之指引效果。

此次臨時協議主要針對人工智慧定義及適用範圍進行確定定義,確認人工智慧系統產業鏈之提供者及部署者有其相應之權利義務,間接擴大歐盟在人工智慧領域之管轄範圍,並對於人工智慧系統的定義縮小,確保傳統計算過程及單純軟體使用不會被無意中禁止。對於通用人工智慧基礎模型之部分僅初步達成應訂定相關監管,並對基礎模型之提供者應施加更重之執行義務。然由於涉及層面過廣,仍需業界、科學社群、民間及其他利害關係人討論準則之制定。

面對AI人工智慧之快速發展,各國在人工智慧之風險分級、資安監管、法律規範、資訊安全等議題持續被廣泛討論,財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境,將持續觀測各國法令動態,提出我國人工智慧規範之訂定方向及建議。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1] Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI,https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited December 25, 2023).

[2] European Commission, Commission welcomes political agreement on Artificial Intelligence Act,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6473 (last visited December 25, 2023).

[3] Artificial intelligence act,P5-7, https://superintelligenz.eu/wp-content/uploads/2023/07/EPRS_BRI2021698792_EN.pdf(last visited December 25, 2023).

[4] GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act, https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2 (last visited December 25, 2023).

[5] General purpose AI-consisting of models that “are trained on broad data at scale, are designed for generality of output, and can be adapted to a wide range of distinctive tasks”, GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act, https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2 (last visited December 25, 2023).

你可能會想參加
※ 歐盟「人工智慧法」達成政治協議,逐步建立AI準則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9105&no=55&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
歐盟商標協會(ECTA)針對3D列印設計保護修法方向,向歐盟提交立場意見書

  2021年4月26日,歐盟商標協會(European Communities Trade Mark Association,以下簡稱ECTA)針對3D列印設計保護修法方向,向歐盟提交一份立場意見書(position paper)。歐盟自1998年發布《設計指令》(Directive 98/71/EC on the legal protection of designs)及2002年發布《設計規則》(Council Regulation(EC) No 6/2002 on Community designs)以來,已多年未進行修正;為了能對設計提供更有效的法律保護,歐盟從2018年起開始進行修法的公眾諮詢,並於2020年11月提出修法評估報告。   ECTA一直以來都很關注3D列印技術發展涉及的智慧財產議題,在意見書中列出了修法時應納入評估的重點。例如ECTA指出,雖然3D列印所使用的CAD模型檔案僅是列印過程中的媒介,檔案本身不能受到設計法律的保護,但檔案中包含了設計藍圖及其設計特徵,為了讓以數位形式呈現的設計能受到保護,建議應考慮修改《設計規則》第3條(b)及《設計指令》第1條(b)中對於產品(product)的定義,將CAD模型檔案及其他任何含有以數位形式呈現設計的物件(items)也納入產品的定義之中。   其次,ECTA認為應針對任何明知有侵權事實,但仍提供幫助的行為人課予輔助侵權責任(contributory infringement),以提供設計權人更有效的武器來捍衛自身權利。如行為人未經設計權人同意,自行利用3D儀器掃描物體,根據所得數據製作成CAD模型檔案,並將該CAD模型檔案提供給直接侵權人時,應成立輔助侵權。   最後,ECTA認為目前沒有針對3D列印技術制定專法的必要,僅需要在現行智財法律體系中進行修法調整即可,以避免法律體系過於複雜。

綠色經濟草案(Green New Deal Resolution)簡介

一、立法背景   由於美國國家海洋暨大氣總署(National Oceanic and Atmospheric Administration,縮寫NOAA)於2018年間發布關於氣候變遷將導致經濟發展受到影響之相關報告,同時間,美國最高法院拒絕駁回2015年由21位民眾及美國Our Children’s Trust(非政府組織)對聯邦政府所提起之訴訟,主張美國政府並未循正當法律程序,即鼓勵對環境保護傷害甚鉅之石化能源開發。因此聯合國人權暨環境特別報告(UN Special Rapporteur on human rights and the environment)呼籲各國盡快針對環境變遷採取相關行動,美國國會議員Ed Markey及Alexandria Ocasio-Cortez遂基於上述情事於2019年2月7偕同提出綠色經濟草案(下稱本草案)。 二、草案簡介   所謂綠色經濟,是因應全球經濟危機、氣候變遷、石油資源枯竭而提出,其內容包括金融及租稅政策的重建以及再生能源的運用,初始概念於2007年由一位記者刊載於時代雜誌與紐約時報,後相關倡議人士遂依此成立非政府組織The Green New Deal Group,並於2008年廣泛發行相關刊物。 三、草案內容   本草案賦予政府五大義務:溫室氣體零排放、創造百萬高薪工作機會、投資基礎設施及工業、永續環境(諸如確保空氣、水質、氣候、食品之安全、韌性社區之推動)、反壓迫等,且內容上更將前開義務再行細分為14項目標計畫,並訂定10年執行期間。   上揭14項目標計畫的內容大致可分為五類,分別為:提升基礎設施以因應各種氣候變遷所造成之災害、將政府所需能源全數轉換為零碳排放、提升電力及能源效率、消除製造業與農業所造成之汙染與溫室氣體的排放,另外亦全面將大眾運輸設施改建為高速及零碳排放系統。   為達成前述14項目標,本草案一共訂定15項須政府配合之細項,方向上包括:給予社區、組織、機關、地方政府及各法人相關協助、提供適切之訓練課程及高等教育、針對新興科技之研究與開發進行投資、提高家庭所得及保障各級勞工組織工會之權利、提供全民高品質之健康照護。

關於軟體產品的智慧財產權保護建議

  近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。   然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。   綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

TOP