美國食品藥物管理局(U.S. Food and drug administration, FDA)於2024年1月31日發布《品質管理系統法規最終規則》(Quality Management System Regulation(QMSR)Final Rule),主要內容為修改美國聯邦法規(Code of Federal Regulations, CFR)第21章第820條,品質系統規範(Quality System Regulation, QSR)中現行優良製造規範(Current Good Manufacturing Practice, cGMP, CGMP)內容,以降低美國國內法規與國際醫療器材品質管理系統標準ISO 13485的差異,達到減輕醫材製造商、進口商的監管負擔之效。
與美國QSR相比,ISO 13485對「風險」與「透明度」規範的要求更加嚴格,故此最終規則主要將QSR中風險管理與透明度的規範依照ISO 13485進行補足。並增修QSR中未出現於ISO 13485中或即將取代ISO 13485中同義的名詞或術語的定義,用以降低原先QSR與ISO 13485的差異。同時增設對記錄保存、標籤和資訊可追溯性要求等FDA認為ISO 13485未涵蓋完全的額外規定,用以完善整體規則完整性。
該最終規則預計於2026年2月2日正式實施。FDA預估此次修訂會有效降低醫材製造、進口商的潛在金錢與時間成本,FDA提供近3年的緩衝期,即希望相關工作人員與醫材製造商能熟悉並遵循新的QMSR。未來FDA會追蹤並評估是否應將ISO13485的變更納入QMSR中,以促進醫材監管的一致性,並為病人及時推出安全、有效且高品質的醫材。
基因改造食品的安全性,向來引起全球關注,各界爭議不休。美國農業部在上(5)月29日公開表示,在奧勒岡州(Oregon)的私人農場中發現基因改造小麥,這是否屬於單一個案,還是意味著基改防線已有所瓦解,對於美國基改管理體系具有重大意義。以目前而言,美國尚未核准任何基因改造小麥。 美國是全球最大的小麥供應國,每年有4000萬噸小麥輸入亞洲;其中,日本更是美國最重要的海外市場。在本案爆發之後,日本於第一時間暫停來自美國西北的小麥進口至美國境內,這股緊張氣氛預計將快速漫延至其他亞洲國家。 事實上,在這事件同時,於綠色和平(green peace)及其他NGO團體串聯下,全球200萬民眾走上街頭,抗議美國孟山都(Monsanto)及其研發的基因改造食品,包括美國、加拿大、阿根廷等,估計共有52國、436個城市響應,一齊表達對於基因改造食品的不安感。在基因改造食品的長期爭議下,美國有若干州考慮採取立法管制,特別是要求基因改造作物或產品必須要標示清楚,以保護消費者的權益。最新的進展是,在本(6)月4日,康乃迪克州(Connecticut)議會以134比3,通過基因改革食物法案,要求各項食物必須明確標示是否含有基因改造成分。在這之後,緬因(Maine)州也立即跟進,以141比4通過類似的基改標示法案。而案件爆發地–奧勒岡州,則還沒有進一步消息。
何謂瑞士種子資金投資競賽(Venture Kick)瑞士為縮短新創公司走向市場時間,成立種子資金投資競賽(Venture Kick),透過階段競賽方式,擇選具發展潛力之高科技創新創業團隊,並提供國內外創業輔導資源與資金,促成瑞士創新成果產業化運用之目標。Venture Kick共分為三個階段的競賽:第一階段係針對創新構想(business idea)作評分,每月選出8個團隊作創新構想的報告,另從中取4個團隊進入第二階段,並獲取獎金1萬元;第二階段會就進一步的商業模式作評選,包括經營策略、目標客戶以及策略夥伴等,進入第二階段的3個月內,各團隊藉由專家指導,發展適合之商業模式與經營策略,另再選出一半的團隊進入第三階段評選和獲取獎金2萬,最後階段之評選,擇以協助競賽團隊設立新創公司為目標,競賽團隊應於進入第三階段6個月後完成進入市場準備與提出完整商業營運計畫,最後會從2個團隊中選出1個具發展潛力之競賽團隊給予10萬元之創業基金。截至目前,受到贊助新創公司高達250家,總金額超過1500萬瑞士法郎
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
FCC第二號命令對我國必要轉播條款的啟示