美國食品藥物管理局(U.S. Food and drug administration, FDA)於2024年1月31日發布《品質管理系統法規最終規則》(Quality Management System Regulation(QMSR)Final Rule),主要內容為修改美國聯邦法規(Code of Federal Regulations, CFR)第21章第820條,品質系統規範(Quality System Regulation, QSR)中現行優良製造規範(Current Good Manufacturing Practice, cGMP, CGMP)內容,以降低美國國內法規與國際醫療器材品質管理系統標準ISO 13485的差異,達到減輕醫材製造商、進口商的監管負擔之效。
與美國QSR相比,ISO 13485對「風險」與「透明度」規範的要求更加嚴格,故此最終規則主要將QSR中風險管理與透明度的規範依照ISO 13485進行補足。並增修QSR中未出現於ISO 13485中或即將取代ISO 13485中同義的名詞或術語的定義,用以降低原先QSR與ISO 13485的差異。同時增設對記錄保存、標籤和資訊可追溯性要求等FDA認為ISO 13485未涵蓋完全的額外規定,用以完善整體規則完整性。
該最終規則預計於2026年2月2日正式實施。FDA預估此次修訂會有效降低醫材製造、進口商的潛在金錢與時間成本,FDA提供近3年的緩衝期,即希望相關工作人員與醫材製造商能熟悉並遵循新的QMSR。未來FDA會追蹤並評估是否應將ISO13485的變更納入QMSR中,以促進醫材監管的一致性,並為病人及時推出安全、有效且高品質的醫材。
美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
北歐能源科技觀點報告討論建築能源效率等為達碳中和所採措施 英國持續推動智慧電表電量消費資料所有權之管制 「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例