韓國修訂《不正當競爭預防和營業秘密保護法》加強對於營業秘密侵權之監管

經查,韓國《不正當競爭預防和營業秘密保護法》(下稱UCPA)之修正案於2024年1月國會通過、2月公布,預計將於8月21日生效。旨在加強對於營業秘密侵權行為的法規監管與處罰力度,故本次修訂以營業秘密相關規定之修正為主,以其他修正(如商標、標誌、地理標示誤用、侵權或其他不公平競爭行為)為輔,本文摘要如下:

一、與營業秘密相關

(一)懲罰性賠償之加重:根據第14-2條第6項規定,針對「故意」營業秘密侵權行為,將懲罰性賠償從3倍上修到5倍。

(二)增加營業秘密侵權行為之監管與罰責:新增第9-8條規定,將「任何人在未經正當授權或超越授權範圍的情況下,不得損害、破壞或改變他人的營業秘密」納入規範,如有違反,將透過新增之第18條第3項規定課予最高10年監禁或最高5億韓元的罰款。

(三)加強對於企業(組織犯罪)之管制效力:基於修法前法人與自然人之罰款數額相同、企業的追訴時效短於自然人,造成難以抑止組織犯罪行為,故新增第19條規定,使企業罰款最高可處自然人罰款3倍,並新增第19-2條規定,將對企業的公訴時效延長至10年(與自然人之訴訟時效同)。

(四)新增沒收規定:依據修法前規定,即使透過UCPA提起訴訟,且侵權人承認侵權,但因為缺乏沒收規定(需要另外依據民事訴訟法才能對犯罪所得進行沒收),導致防止二次侵權損害之效果有限,故修法後透過第18-5條之規定納入可沒收特定營業秘密所得之規定。

二、其他修正

以下兩項修正之對象涉及第2條第1項第1款、第3條、第3-2條第1款(主要為商標、標誌、地理標示等誤用、侵權或其他不公平競爭行為),並不包括營業秘密(營業秘密第2條第1項第2款以下):

(一)加強行政機關的職權:根據第8條規定,關於上述違規行為,相較修法前行政機關僅能提出「建議」(無強制力),修法後特別賦予智慧財產局(KIPO)可以「下令糾正」(시정을 명할 수 있다)之權利,即若未有正當理由依命令糾正者可依照第8條、第20條第1項第1、2款規定公布違反行為及糾正之建議或命令的內容,並對其進行罰款。

(二)法院查閱行政調查記錄的權力的擴張與限制:根據第14-7條規定賦予法院職權,即在法院在特定訴訟中認為必要時,可以要求相關行政單位向法院提出其依據第7條執行的調查紀錄(包括案件當事人的審問筆錄、速記紀錄及其他證據等),若相關紀錄涉及營業秘密,當事人或其代理人可向法院申請就查閱範圍、閱覽人數等進行限制。 綜上所述,可以發現此次修法除了加強法規的監管、處罰力度,顯示近年重視營業秘密爭議外,更特別修訂針對企業、法人等組織犯罪相關規定(如賠償金額的增加,甚至處罰力度大於自然人、訴訟時效的延長等),間接強調企業、法人等組織對於營業秘密侵權有內部管理與監督之責任,若參照資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」對於企業內部管理與監督如何落實之研究,係透過將管理措施歸納成(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)十個單元的PDCA管理循環,旨在提供企業作為機制建立之參考或自我檢視機制完善性的依據,期冀促進企業落實營業秘密管理。

本文同步刊登於TIPS網(https://www.tips.org.tw

相關連結
你可能會想參加
※ 韓國修訂《不正當競爭預防和營業秘密保護法》加強對於營業秘密侵權之監管, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9194&no=57&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
美國能源部加強推動智慧電網之網路安全,並提供自我評估調查工具

  美國能源部於今年(2012)6月28日發布一套新的網路安全自我評估調查工具(Cybersecurity Self-Evaluation Survey Tool),以強化保護公共事業的業者避免遭受網路安全的攻擊,這套工具也是能源部為施行其於5月31日公布的網路安全能力成熟度模型(Cybersecurity Capability Maturity Model)的一部分,同時此模型的發展也是為了支持白宮的電力網路安全風險管理成熟度倡議( Electricity Subsector Cybersecurity Risk Management Maturity Initiative)。   網路安全成熟度模型的發展乃係由能源部與國土安全部共同領導,並且與業界、其他聯邦機構以及卡內基大學軟體工程研究所合作進行,該模型的四個目標在於:加強電力網路安全能力、使相關業者可以有效並持續設立網路安全能力的基準、分享知識、解決的方法與其他相關的參考資料、使業者得以排定對於改善網路安全的行動以及投資上的優先順序,以幫助業者發展並且評估他們的網路安全能力。   此次發佈的評估工具則是以問卷的方式,著重在情境式的認知與威脅及弱點的管理,而後能源部將針對自願提供評估結果的業者提供個案報告,幫助業者改善其網路安全能力,同時,能源部也建議業者,建立優先行動方案,以解決差距的問題,並且定期評估追蹤網路安全能力的改善進度,能源部也提醒業者注意網路威脅環境上與技術上的改變,以進行應變的評估。

零工經濟(Gig Economy)

  近年來興起以UBER為首的「零工經濟」(Gig Economy)議題。按國際勞工組織(International Labor Organization, ILO)的說明:所謂「零工經濟」,是透過數位勞工媒合平台,將分散於各地的勞力資源,按需求(On-Demand)調度到特定地點以執行任務。這些被調度的勞工即為「零工」,多半從事服務性質或任務性質單純且零碎(Micro-Task)的工作,如代駕、代辦雜務、居家打掃。   面對零工經濟的風潮及其衍生的勞資問題,各國積極針對零工經濟推出對應政策。舉例而言,美國加州政府於2019年9月18日通過《AB 5法》(California Assembly Bill 5 (2019)),擴大「正式員工」(Employee)的解釋範圍,並要求資方必須對於「獨立承攬人」(Independent Contractor)之認定負舉證責任。美國國會亦推出《保護零工經濟法》草案(Protect the Gig Economy Act of 2019)。國際組織方面,國際勞工組織從2015年起,發布多份研究報告,更在2017年8月成立「國際勞工組織全球委員會」(ILO Global Commission on the Future of Work)。   國際勞工組織倡議各國設立社會福利專法保障所有零工的基本工資,國際勞工組織指出:美國於2017年約有5,500萬名零工(Gig Workers),佔整體勞動力的34%,2020年可能會成長到43%。然而,僅50%的零工獲得應有的報酬。觀察2017年的數據,零工的平均時薪是4.43美元,假設考量閒置的時間,平均時薪僅剩3.31美元,時薪中位數是2.16美元。關於零工集會結社自由方面,零工已慢慢開始有了組織性的工會,然而,零工向資方爭取權益時,面對傳統工會較不會存在的難題:32%的零工僅為補貼既有正職工作,零工間交流少、對於權益難成共識,無法進而凝聚集體訴訟的力量。再者,勞工運動以實體為首選,然而零工大多透過「數位平台」,數位平台常有總部在境外的現象,零工較難有特定集會地點,甚至難辨識出談判的對象。最後,平台業者多數聲稱零工僅為「獨立承攬人」,然而,平台業者和零工間的法律關係是否為「承攬關係」尚有待商榷,各國政府及國際組織仍在研擬討論階段。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

看韓國如何吹起下一波韓流—韓國著作權認證制度簡介

TOP