2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。
人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下:
1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。
2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。
3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。
4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如:
(1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute);
(2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure);
(3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊;
(4)培養第三方評測機構的專家人才。
5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。
6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。
7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。
8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。
NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。
全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
美國眾議院通過網路保護法美國眾議院於2015年4月22日以307票同意,116票反對,通過網路保護法(The Protecting Cyber Networks Act)。本法之立法目的在於移除法規障礙,美國公司藉此將得以與其他公機關或私人分享資安威脅的相關資訊,以防範駭客攻擊。 本法之重點內容主要係為對於網路威脅指標與防禦辦法之分享。依網路保護法第102條與第104條之規定,分享的客體包括「網路威脅指標」(cyber threat indicator)與「防禦辦法」(defensive measures),分享之對象則分為非聯邦機構(non-Federal entities)以及(國防部或國安局之外的)適當之聯邦機構(appropriate Federal entities)。本法第102條規定,在符合機密資訊、情報來源與方法、以及隱私及公民自由之保護下,國家情報總監(the Director of National Intelligence, DNI)經與其他適當聯邦機構諮商後,應展開並頒布相關程序,以促進下列事項之進行:「(一)與相關非聯邦機構中具有適當安全權限之代表,及時分享(timely sharing)聯邦政府所有之機密網路威脅指標;(二)與相關非聯邦機構及時分享聯邦政府所有,且可能被解密並以非機密等級分享之網路威脅指標;(三)於適當情況下與非聯邦機構分享聯邦政府所有,且與該些機構即將或正在發生之網路安全威脅(cybersecurity threat)有關之資訊,以防止或降低該網路安全威脅所造成之負面影響。」 以及,對於隱私權與公民自由之保障亦非常重要,就隱私權與公民自由之保障,網路保護法主要在第103條第4項設有相關規定。對於資訊安全,該項第1款規定,依本法第103條之規定進行資訊系統之監控、執行防禦辦法、或提供或取得網路威脅指標或防禦辦法之非聯邦機構,應實施適當之安全管控,以保護該些網路威脅指標或防禦辦法免遭未經授權之近用或取得。同項第2款則更進一步規定了特定個人資料在一定條件下應被移除。該款規定,依本法進行網路威脅指標分享的非聯邦機構,於分享前應合理地對該網路威脅指標進行復核,以評估該指標是否含有任何令該機構合理相信(reasonably believes)與網路安全威脅非直接相關,且於分享時(at the time of sharing)屬於特定個人之個人資訊或指向特定個人之資訊,並移除該等資訊。
日本經產省發布中小企業開發IoT機器之產品資安對策指引日本經濟產業省(下稱經產省)於2023年6月6日發布中小企業開發IoT機器之產品資安對策指引(IoT機器を開発する中小企業向け製品セキュリティ対策ガイド),本指引彙整企業應該優先推動IoT機器資安對策,經產省提出具體資安對策如下: 1.制定產品資安政策(セキュリティポリシー)並廣為宣導:由企業經營者率先制定資安政策,進行教育宣導,並依實際需求修正調整。 2.建立適當的資安政策體制:確立實施資安政策必要之人員及組織,明確其職務及責任。 3.指定IoT機器應遵守之資安事項,並預測風險:決定IoT機器的預設使用者及使用案例,並於釐清使用者需求後,指定IoT機器應遵守之資安事項,預測衍生風險。 4.考量IoT機器應遵守之資安事項及預測風險,進行設計與開發:以預設IoT機器應遵守之資安事項衍生風險為基礎,從設計與開發階段開始採取風險對策。 5.檢測是否符合資安相關要件:從設計與開發階段開始制定檢測計畫,檢測是否符合資安要件,並依據檢測結果進行改善。 6.於產品出貨後蒐集風險資訊,與相關人員溝通並適時提供支援:蒐集全球資安事故與漏洞資訊,並設置可適時與委外廠商以及用戶溝通之窗口。
歐盟聯合研究中心公布智慧電網計畫及智慧電表部署的成本效益分析指導原則智慧電網是歐洲未來低碳能源政策的核心議題,但要更新整個電力系統所費不貲,根據國際能源署(International Energy Agency, IEA)研究指出,從2007年至2030年,若要從生產、輸電到配電全部更新,需要花費1.5兆歐元(EUR 1.5 trillion),故基於投資的考量,有必要依據電網示範計畫所獲得的實際數據,來評估智慧電網發展的成本效益。因此,歐盟聯合研究中心(Joint Research Centre, JRC)分析了歐洲過去及現在正在進行的智慧電網示範計畫的成果,提出全面性的成本效益分析(cost-benefit analysis, CBA)評估架構,並選定葡萄牙InovGrid計畫作為參考實例以調整相關內容,於2012年初公布「智慧電網計畫的成本效益分析指導原則(Guidelines for conduction a cost-benefit analysis of Smart Grid projects,以下簡稱「智慧電網CBA指導原則」)」。 這是第一次具體的將CBA使用在智慧電網的實際案例評估之上,「智慧電網CBA指導原則」是為協助使用者分析不同地區的考量因素,以瞭解利益與成本,並分析關鍵要素,包括計畫的規模大小(例如每年接受服務的消費者、能源消費等)、工程特色(例如所採用的技術、主要設備的功能性)、電網當地特色、利益關係者(哪些人的成本及利益應納入考慮)、計畫的明確目的及預期對社會經濟的衝擊,以瞭解像分散式能源整合的可能性、電價及租稅的衝擊、環境成本等。「智慧電網CBA指導原則」是在提供建議,依據電力研究機構(Electric Power Research Institute, EPRI)的研究框架,逐步地提供了評估架構,作為分析考量時的核對清單。由於納入了地區性因素的考量,因此分析的結果最終將取決於各計畫的開發者及相關決策者的專業判斷。 此外,JRC亦公布「智慧電表部署的成本效益分析指導原則(Guidelines for conduction a cost-benefit analysis of Smart Metering Deployment,以下簡稱「智慧電表CBA指導原則」)」。「智慧電表CBA指導原則」之內容主要提供會員國在評估智慧電表的部署時,有一套分析的標準。如同「智慧電網CBA指導原則」一般,「智慧電表CBA指導原則」亦考量計畫規模、工程特色、電網當地特色、利益關係者、計畫的明確目的及預期對社會經濟的衝擊等因素,但非針對不同地區提供細節性的指示,因此仍須仰賴各計畫的開發者及相關決策者的專業判斷,以評估智慧電表部署的可行性。