美國白宮呼籲採取行動,打擊利用AI生成影像進行之性虐待行為

美國白宮於2024年5月23日公開呼籲採取行動以打擊利用AI生成性影像,及未經當事人同意傳播真實影像的性虐待行為。此次呼籲源自白宮「解決線上騷擾與虐待問題工作小組」(Task Force to Address Online Harassment and Abuse)相關行動、總統第14110號行政命令-「安全、可靠且可信任之AI開發及利用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence),以及尖端AI公司自願管理AI風險之承諾(Voluntary AI Commitments)。

白宮指出,迄今為止生成式AI已淪為性虐待的主要工具,同時,涉及未經同意散布或威脅散布私人性影像,亦將對受害者造成嚴重的心理傷害。白宮呼籲相關利害關係人透過自願性承諾,預防與減輕性虐待影像之影響,如:

(1)阻止性虐待影像獲利:
對於從事性虐待影像業務的網站或應用程式,支付平臺與金融機構可限制或拒絕對其提供支付服務。

(2)停止創建深偽性虐待影像
: 對於可透過AI生成性影像之網路服務或應用程式,雲端服務供應商與應用程式商店得減少此類網路服務或應用程式運作。此外,應用程式商店可要求應用程式開發人員採取措施,防止使用者製作非經當事人同意的AI生成性影像。

(3)防止散播性虐待影像:
應用程式與作業系統開發人員可啟用技術保護措施,以保護數位裝置上儲存之內容,防止未經當事人同意分享其影像。

(4)支援並參與為受害者提供有效補救措施之服務:
平臺與利害關係人可選擇與相關組織合作,使性虐待影像受害者可輕鬆且安全地從線上平臺中刪除未經同意之內容。此外,白宮亦呼籲國會修訂於2022年重新授權之「婦女暴力防制法」(Violence Against Women Act Reauthorization),延續並加強原有法律保護效力,同時為AI生成之性虐待影像的受害者提供關鍵援助資源。

相關連結
※ 美國白宮呼籲採取行動,打擊利用AI生成影像進行之性虐待行為, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9205&no=55&tp=1 (最後瀏覽日:2025/11/19)
引註此篇文章
你可能還會想看
因應巨量資料(Big Data)與開放資料(Open Data)的發展與科技應用,美國國會提出「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act)

  美國國會議員Markey與Rockefeller於2014年2月提出S. 2025:「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act),以促進對於消費者保護,與資料仲介產業發展間的平衡。該草案預將授權「美國聯邦貿易委員會」與各州據以監督與執行。   該草案對「資料仲介商」(以下簡稱Data Broker)加以定義為係以銷售、提供第三方近用為目的,而蒐集、組合或維護非其客戶或員工之個人相關資料的商業實體;更進一步的禁止Data Broker以假造、虛構、詐欺性的陳述或聲明的方式(包括提供明知或應知悉為偽造、假造、虛構、或詐欺性陳述或聲明的文件予以他人),自資料當事人取得或使其揭露個人相關資料。   該草案亦要求Data Broker建置及提供相關程序、方式與管道,以供資料當事人進行下列事項: 1.檢視與確認其個人相關資料(除非為辨識個人為目的的姓名或住址)正確性(但有其他排除規定)。 2.更正「公共紀錄資訊」(Public Record Information)與「非公共資訊」(Non-public Information) 3.表達其個人相關資料被使用的時機與偏好。例如在符合一定條件下,資料當事人得以「選擇退出」(Opt Out)其資料被Data Broker蒐集或以行銷為目的而販售。   於此同時,加州參議院亦已於2014年5月通過S.B. 1348:Data Brokers的草案,該草案要求資料當事人擁有檢視Data Broker所持有的資料,並得要求其於刪除提出後10天內永久刪除;當資料一經刪除,該Data Broker不得再行轉發或是將其資料販售給第三人。加州參議院並提案,該法案通過後將涵蓋適用至2015年1月1日所蒐集的資料,且個人於Data Broker每次違反時得提出$1,000美元的損害賠償訴訟(律師費外加)。雖然該草案受到隱私權保護團體的支持,卻受到加州商會(California Chamber of Commerce)與直銷聯盟(Direct Marketing Association)的反對。加州在Data Broker的立法規範上是否能超前聯邦的進度,讓我們拭目以待吧。

何謂「歐盟防禦基金」?

  歐盟防禦基金(European Defence Fund)係於2016年,由歐盟執委會主席Juncker所宣布成立,旨在促進成員國之技術與設備合作、鼓勵中小企業參與項目,促進突破性創新(breakthrough innovation)解決方案,俾達協調、供給並擴大國防設施投資、捍衛歐盟戰略自主之目的。   歐盟防禦基金之進程目前可分為兩階段。第一階段係於2017-2020年,透過「國防研究籌備行動」與「歐盟防禦工業發展項目」等兩個項目,對歐盟成員國間之防禦合作進行測試。其後,為進一步強化戰略自主與抵禦之能力,歐盟執委會於2018年6月13日決議增加基金2021-2027年之預算至130億歐元,與成員國共同進行防禦科技與設備之研發,是為第二階段。   於130億歐元之預算中,89億歐元將以共同投資之方式,讓歐盟與成員國共同投入發展計畫,包含原型(prototype)之開發(占20%)、認證與測試(占80%)。而為確保、鼓勵研發成果之可用性,共同投資係以成員國承諾採購研發成果為前提。具體而言,此一共同投資計畫具下述特點: 投資項目需有助於歐盟國防安全、符合《共同安全與防禦政策》(Common Security and Defence Policy)之優先項目,並經其成員國與NATO等國際組織同意。 以突破性創新為目標,提撥5%的資金專用於破壞式創新技術和設備之研發,以提升、鞏固歐盟長期之技術領先地位。 合作項目需有三個以上、來自不同成員國之參與者;並以優惠利率為誘因,吸引中小型企業跨境參與。 參與之成員國需承諾採購最終之研發成果。

加州通過學生線上個人資料保護法案(the Student Online Personal Information Protection Act)

  隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。   SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。   此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。   SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。

歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

TOP