加拿大政府公開徵求利用衛星擴充行動通訊覆蓋範圍之意見,期能彌平通訊落差現況

加拿大創新科學暨經濟發展部(Innovation, Science and Economic Development Canada, ISED)於2024年6月24日啟動「以衛星擴充行動通訊覆蓋範圍之政策、授權與技術框架」(Policy, Licensing and Technical Framework for Supplemental Mobile Coverage by Satellite (SMCS))公眾意見徵詢,指出偏遠地區通訊服務不足之現況將帶來嚴重公共安全風險,並抑制經濟成長與社會融合,因此提出擬透過公眾意見徵詢達成之四項政策目標如下:

(1)為服務缺乏、不足之區域提供行動通訊服務;

(2)促進無線服務提供之競爭性,提供消費者更多選擇;

(3)提升電信服務的可靠性與韌性;

(4)開發創新應用促進無線網路的投資與發展。

以此政策目標為基礎,ISED就以下內容徵詢公眾意見:

(1)頻譜政策框架:
於考量區域/國際協調、利害關係人利益、最小化干擾等因素後,提出多個適用頻段選項。

(2)SMCS授權框架:
探討以行動衛星服務(Mobile satellite services, MSS)框架為基礎,對衛星與地球基地臺(如手機)分別進行授權,並針對個別許可證授予條件(如不允許排他性條款等)提出建議。

(3)技術考量因素:
討論行動通訊消費者設備與SMCS太空基地臺技術要求、同頻段共存與預防干擾等議題。

新的SMCS框架預計於2025年4月1日生效,而在新框架生效前,考量到試驗或早期布建能帶來之利益,ISED將依據文件內之資格要求,針對個案核發SMCS暫時許可。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 加拿大政府公開徵求利用衛星擴充行動通訊覆蓋範圍之意見,期能彌平通訊落差現況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9221&no=57&tp=1 (最後瀏覽日:2025/07/05)
引註此篇文章
你可能還會想看
美國通過《音樂現代化法》(Music Modernization Act, MMA)

  美國於2018年10月11日正式簽署通過《音樂現代化法》(Orrin G. Hatch-Bob Goodlatte Music Modernization Act, MMA),該法搭起時代鴻溝的橋樑。《音樂現代化法》囊括三個從2017年分別通過的子法,並成為《音樂現代化法》中的三個大標題:   第一部份:音樂授權現代化(Music Licensing Modernization)   音樂作品本身的著作權、重製權是「大權利」(Grand Right),而公開傳輸權則是「小權利」(Small Right)。前者是恢復市場機制、自由議價,愈自由愈好;後者則是愈方便、愈能夠使音樂作品被世人看見愈好。《音樂現代化法》實踐了這個理想。《音樂現代化法》成立職司音樂著作授權的非營利組織「音樂機械灌錄集體授權組織」(The Mechanical Licensing Collective, MLC)。該組織是針對「數位音樂串流業者」量身打造,進行音樂數位使用(Digital Uses)的概括式授權(Blanket License)。再者,根據舊法,授權金是法定的,但《音樂現代化法》予以音樂創作人對其作品的授權金額保有協商權(Authority to Negotiate)。同時透過音樂資料庫的建立和免費線上檢索系統,方便音樂使用人查詢與媒合。   第二部份:經典音樂法(CLASSICS Act)   溯及賦予1923年1月1日至1972年2月14日之間的音樂,就未經授權而進行「數位錄音傳輸」(Digital Audio Transmissions)之行為,使之有從首次公開發行後95年的著作權保護。這裡授權的客體所會得到的權利相近於1972年後錄音著作「非互動式數位串流服務」所得到的保護。   第三部份:音樂製作人分潤(Allocation for Music Producers)   在科技世代,一個偉大的音樂創作,並非作曲人獨力完成的,《音樂現代化法》以分潤制度,讓音樂製作人、混音師及音訊工程師首次獲得法律上的權利。

運用AI工具協助管理智慧財產組合(IP Portfolio)之方式

美國實務界律師2023年6月9日撰文指出,人工智慧(artificial intelligence,簡稱AI)將對智慧財產法律和策略帶來改變,大部分企業熟悉的改變是目前仍有爭議的法律問題—由AI工具產生的發明創造是否為專利或著作權適格的保護標的。但除此之外,AI工具對於創建和管理智慧財產組合(IP Portfolio)的方式也已發生改變,並介紹以下五種利用AI工具協助管理智慧財產組合之方式。 1.簡化先前技術之檢索 無論是評估新產品的可專利性、評估競爭對手之智慧財產權之相關風險、抑或是回應侵權索賠,企業均須了解特定領域之先前技術,因應此需求,全球已有大量公司提供先前技術檢索服務,惟AI工具的出現使得企業可自行進行先前技術檢索。例如知名的文件審查平台Relativity創造了Relativity Patents,使用者輸入專利號碼等特定關鍵字即可進行先前技術檢索;美國專利商標局亦為了審查官開發一種AI工具,提升其確認先前技術之準確性及效率。 2.協助專利申請文件撰寫 對於專利申請人而言,可使用AI工具協助草擬專利申請範圍,有些企業甚至會運用AI工具自動化撰寫專利申請文件,惟使用AI工具撰寫專利申請文件時,應留意提供AI工具的資料是否會保密,抑或有向第三人提供之風險。此外,AI工具撰寫之內容建議仍須雙重確認內容正確性及適當性,如引用來源及內容是否正確。 3.改善商標維權能力 企業可使用AI工具協助監控潛在的侵權及仿冒產品,有鑒於現今網站及社群媒體仍有大量未經商標授權的賣家存在,AI工具可作為審查貼文及識別商標侵權案件之工具,相較於傳統的人工審查可更有效率。 4.協助商標檢索作業 於美國、澳洲、歐盟、中國,甚至世界智慧財產組織導入AI工具協助審查官進行商標審查,包括以關鍵字及影像標記之搜尋功能,此一工具不僅可簡化商標申請和註冊審查程序與時間,亦有部分國家提供使用者自行檢索之功能,使企業可進行更快速、有效率之商標檢索,使其於品牌保護策略上節省不必要之時間及金錢。 5.支持策略性專利組合管理 AI工具亦可協助專利組合管理,包括最廣的專利範圍、評估是否需繼續維護專利、或是評估擬收購專利之價值,以AI工具協助評估以上事項,雖無法完全取代人工進行策略評估,惟可顯著減少勞動力支出。 AI工具改變了智慧財產組合創建及管理之方式,雖然AI工具不能完全承擔管理智慧財產權組合之職責,但AI工具在專利/商標檢索、專利申請文件撰寫、專利權評估、商標維權等方面已可大量減少人力及管理成本,有助於企業智慧財產組合管理,惟企業及使用者須留意使用AI工具的資料管理問題,以避免機密資訊遭到外洩。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

員工分紅列費用之會計處理 金管會擬自民國97年起適用

  新修正商業會計法第 64 條規定,商業對業主分配之盈餘,不得作為費用或損失。但具負債性質之特別股,其股利應認列為費用。本條但書即是企業對於員工分紅應與以費用化之法源。配合此一新修正規定,金管會前已邀集業界及產業公會、四大會計師事務所與相關政府單位等,針對員工分紅費用化相關問題共同討論以研擬員工分紅費用化之相關會計處理及配套措施。 金管會及有關單位研討後決定, 在會計處理方面,企業應於期中報表依章程所訂之比率,預估員工分紅及董監酬勞金額入帳。期後董事會決議發放金額有重大變動時,該變動應調整當年度(原認列員工紅利之年度)之費用。至於次年度股東會決議若有變動,則依會計估計變動處理,列為次年度損益。 至於員工分紅配發股數之計算基礎以公平價值評價,上市上櫃公司應以股東會開會前一日之公平市價(考慮除權及除息之影響)計算股票紅利股數;興櫃公司及未上市上櫃之公開發行公司則應以股東會前最近期經會計師查核簽證之財務報告淨值計算股票紅利股數。企業發行員工認股權憑證及買回庫藏股轉讓予員工,應以公平價值法認列為費用。 以上決議將自 民國九十七年一月一日 起的財務報表開始適用。   由於員工分紅費用化,對一向以股票分紅作為獎勵員工的科技產業,可能造成不小的衝擊,因此,金管會也提出「員工認股權憑證制度」及「庫藏股票制度」的配套措施,並將修正「發行人募集與發行有價證券處理準則」與「上市上櫃公司買回本公司股份辦法」。金管會表示,有關本案規劃措施及實施日期,將由經濟部彙整各部會意見,提報行政院,相關措施將配合實施日程發布。

奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市

  近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。   2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。   卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。   雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。

TOP