為應對日益嚴峻的國際情勢,並避免研究能力下降、生態系進展緩慢對經濟、社會發展造成衝擊,日本內閣府於2024年6月4日發布「綜合創新戰略2024」(統合イノベーション戦略2024),提出三大強化措施與三大發展主軸,綜整未來科技與創新的重要發展方向。具體內容整理如下:
1.強化措施
(1)關鍵技術綜合戰略
開發核心技術,在各戰略領域如人工智慧、機器人、物聯網等,透過產官學界合作推進技術融合與研究開發、推動人才培育,並促進新創發展。
(2)加強國際合作
從全球視角積極運用資源進行策略性協作,並以促進開發利用、確保安全性為主要目標,主導、參與重要技術相關之國際規則制定。
(3)強化人工智慧領域競爭力並確保安全性
包含創新研發人工智慧之應用,及利用人工智慧加速創新速度等。
2.發展主軸
(1)推進先進科技戰略
針對各重要領域如人工智慧、核融合能源、量子科技、生物科學、材料科學、半導體與通訊技術(6G)推展研究;確保大學與研究機構之研究安全性與倫理,並為設立智庫強化研究機能預做準備;同時綜合運用各領域的知識創造價值,為整體社會提供自動化、省力化、防災減災之科學技術。
(2)研究能力與人才培育
透過補助優秀大學與研究費用、扶植區域核心及具有特色的研究型大學、強化國家研究設施並促進設施間之合作性發展研究基礎;以及推動開放政府資助研究之資料與學術論文。
(3)營造創新生態系
透過SBIR計畫(Small Business Innovation Research,小型企業創新研發計畫)補助,並促進新創企業之政府採購;藉由產官學合作推展創新;以及擴大政府與民間研發投資規模,促進人才、技術、資金在大企業與新創公司間流動等。
日本政府認為,核融合能源與量子科技等關鍵技術將為新產業發展的開端,本戰略亦將成為未來日本新一期科學技術與創新基本計畫(科学技術・イノベーション基本計画)開展之基礎。我國於半導體、量子科技等關鍵科技發展皆緊跟國際腳步,因此相關戰略措施後續之推動與落實,亦值得我國持續關注、參考。
美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
美國聯邦政府規劃專案計畫,推動機構建築能源效率政策目標去年(2011)十二月,歐巴馬總統簽署的備忘錄(Presidential Memorandum)中要求聯邦政府機構在未來的兩年間可以在建物能源效率的提升上,達成至少2億美元的目標,而在今年(2012)5月2日,各聯邦政府機構終於完成其第一階段的任務,也就是完成額度分配的任務,由農業部、商業部、國防部、司法部、能源部、國土安全局等各聯邦政府機構,共同參與並完成這2億目標額的分配。 在能源效率的提升計畫中,各機構預計簽訂總共約21億的成效式合約(performance-based contract),用以支付其改善能源效率上所需的經費,其中已完成超過1億美元節能績效保證契約(Energy Savings Performance Contracts ,ESPCs) 和節能服務契約(Utility Energy Savings Contracts ,UESCs)的簽訂,另外還有約12億美元的項目正在開發中,預計於2013年前完成所有21億美元契約的簽訂,以呼應總統要求強力發展能源效率氣勢。 節能績效保證契約是與ESCO(energy service company)簽訂的一種合約,合約中,聯邦政府不需要國會事先撥款支付資金成本予ESCO,而是由ESCO在經過諮詢後,擬定符合聯邦機構需求的節約能源計畫,並支付所需的資金支出,但是ESCO將會保證計畫中所節省下來的能源支出,足以支付契約期間內的支出並取得獲利為報酬,契約期間最長可達25年;節能服務契約則是供電業者提供更有效率的供電方式,並由業者編列資金來支付計畫的資金支出,而業者將會由契約期間內所節省來的電費獲得回報。 同時,在這些聯邦政府機構聯合領導下,60個主要企業的CEO、大學、市長和勞工領袖等皆代表不同單位,共同做出改善估計約1.6億平方英尺商業建物的能源效率,例如一些大型賣場正著手於改善他們的照明設備以及為他們的冷凍設備裝上門,一些醫院以及大學也意識到能源效率的改善將會為他們節省大筆的支出並且為病患或是學生提供更好的服務 除此之外,一些金融機構亦作出2億美元的資金承諾,由於能源效率改善的花費對一些私人機構而言,是一個主要的限制,因此花旗銀行以及一些金融服務業者以直接投入資金的方式,或是針對不動產所有權人的資金需求設計出相關的金融服務。 以上這些行動除了在於達成能源效率改善的目的,滿足歐巴馬總統設定於2020年前減少20%的能耗目標,重要的是同時也預計將創造出高達11萬4千個工作機會,這些都是歐巴馬政府於去年2月提出的「建物改善」(Better Building)倡議中的一部分,也屬於美國政府現在「刻不容緩」的政策執行重點(We Can’t Wait execution action)項目之一。
何謂「中國製造2025」?中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。