日本內閣府發布「綜合創新戰略2024」

為應對日益嚴峻的國際情勢,並避免研究能力下降、生態系進展緩慢對經濟、社會發展造成衝擊,日本內閣府於2024年6月4日發布「綜合創新戰略2024」(統合イノベーション戦略2024),提出三大強化措施與三大發展主軸,綜整未來科技與創新的重要發展方向。具體內容整理如下:

1.強化措施

(1)關鍵技術綜合戰略
開發核心技術,在各戰略領域如人工智慧、機器人、物聯網等,透過產官學界合作推進技術融合與研究開發、推動人才培育,並促進新創發展。

(2)加強國際合作
從全球視角積極運用資源進行策略性協作,並以促進開發利用、確保安全性為主要目標,主導、參與重要技術相關之國際規則制定。

(3)強化人工智慧領域競爭力並確保安全性
包含創新研發人工智慧之應用,及利用人工智慧加速創新速度等。

2.發展主軸

(1)推進先進科技戰略
針對各重要領域如人工智慧、核融合能源、量子科技、生物科學、材料科學、半導體與通訊技術(6G)推展研究;確保大學與研究機構之研究安全性與倫理,並為設立智庫強化研究機能預做準備;同時綜合運用各領域的知識創造價值,為整體社會提供自動化、省力化、防災減災之科學技術。

(2)研究能力與人才培育
透過補助優秀大學與研究費用、扶植區域核心及具有特色的研究型大學、強化國家研究設施並促進設施間之合作性發展研究基礎;以及推動開放政府資助研究之資料與學術論文。

(3)營造創新生態系
透過SBIR計畫(Small Business Innovation Research,小型企業創新研發計畫)補助,並促進新創企業之政府採購;藉由產官學合作推展創新;以及擴大政府與民間研發投資規模,促進人才、技術、資金在大企業與新創公司間流動等。

日本政府認為,核融合能源與量子科技等關鍵技術將為新產業發展的開端,本戰略亦將成為未來日本新一期科學技術與創新基本計畫(科学技術・イノベーション基本計画)開展之基礎。我國於半導體、量子科技等關鍵科技發展皆緊跟國際腳步,因此相關戰略措施後續之推動與落實,亦值得我國持續關注、參考。

相關連結
你可能會想參加
※ 日本內閣府發布「綜合創新戰略2024」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9242&no=57&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
IBM同意中國大陸政府檢視部份產品原始碼

  近年來中國大陸政府為了資安考量,制訂相關法規要求外國科技公司進入中國大陸市場時必須提供程式原始碼,避免他方非法(例如利用病毒)透過電腦軟體進入中國大陸的系統和資料。   IBM公司近日發表聲明,允許特定國家在其嚴格的監控下,檢視其部份產品的軟體原始碼,確保產品沒有資訊安全的漏洞,中國大陸也在這些特定國家之列。這是美國重要的科技大廠,首次公開同意遵守中國大陸政府對於外國技術的資訊安全審查,然而此舉讓美國政府與其他矽谷科技公司頗有微詞。   IBM開放檢視其程式碼的對象為中華人民共和國工業與信息化部。IBM在聲明中表示,原始碼的檢視必須在IBM公司內,於無網路連線並受IBM安全應用程式監控的環境下進行,並保證這些軟體原始碼不會被釋出、被複製,或以任何方式改作。在嚴格的環境和時間限制下,IBM不會讓中國大陸政府有機會接觸其客戶資料庫,也不會涉及後門程式(back door)。至於會提供哪些產品的原始碼檢視,或中國大陸官方可檢視的時間有多長,IBM尚無明確說明。事實上IBM並非唯一提供程式碼的科技公司,微軟公司早在2003年即允許中國大陸、俄國、英國等國家檢視微軟Windows部分產品的原始碼。   有市場分析公司指出,IBM為降低智慧財產權被複製的風險,所釋出的原始碼可能只涉及基本功能,不包含專有的演算碼,且像IBM此類的公司,應該擁有閉源軟體(closed-source)或特別的軟體以嚴密地維護底層的原始碼,避免中國大陸政府藉由檢視原始碼執行反向工程(Reverse Engineering)。   IBM公司願意提供中國大陸政府檢視部分產品原始碼,目的在於展示其產品安全性,試圖擴展IBM在中國大陸的商業版圖。IBM旗下的雲端運算平台Bluemis未來將與中國大陸的數據中心服務公司—北京世紀互聯寬帶數據中心有限公司合作。該公司同時也是微軟在中國大陸的合作夥伴。

技術移民範圍放寬

  未來我國的技術移民政策,將放寬不再侷限於以往所重視的「高科技人才」者。內政部戶政司表示,該政策目的之改變,乃是參照了美國 、加拿大、澳洲及紐西蘭等國為促進該國經濟發展,創造就業機會,分別訂有投資移民的相關規定,供有意移民該國之外籍人士申請。   修正條文第25條第3項:外國人有下列情形之一者,亦得以向入出國及移民署申請永久居留:一 、對我國有特殊貢獻;二、為我國所需之高級專業人才。第4項:外國人得向入出國及移民署申請在我國投資移民,經審核許可且實行投資者,同意其永久居留。   因此,為了趨近國際化的趨勢,在本次的「入出國及移民法修正草案」中,將過去偏重於「高科技人才」的引入,擴大為「高級專業人才」;並且新增「投資移民」之外國人得以直接申請永久居留,以滿足多元化的經濟與社會需要。至於「大陸技術人才」亦視為外籍技術人士看待。

談業界控管奈米風險之自主管理機制-以杜邦公司奈米風險架構為中心

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP