美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。
本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。
1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。
2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。
3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。
4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。
5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。
6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。
7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。
8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。
Proprius21專案乃是日本東京大學提供企業界可以與該校共同進行研究的一種機制,屬產學合作方式之一。此專案之提出,係該校有鑒於過去產業界與學術界合作進行共同研究的模式,多以特定的企業與特定的研究室間進行一對一的研究為主。然此一共同研究方式雖可讓大學所產出的知識貢獻給社會。但仍嫌規模過小,課題及責任分擔或目標成果不夠明確,所以需要一個可以創造更大規模的創新的機制。基此,東京大學希望透過Proprius21專案創造一個可由該校內部數個單位或研究室,共同參與大型研究主題的專案,以實現從多樣化的觀點來因應數個或一個企業需求之共同研究(多對多或多對一),並結合校內能量完成提案的機制。 東京大學規劃在校內以三階段活動進行Proprius21專案:(1)公開交換意見,即讓「產業界與學術界相遇的場合」的廣場活動。(2)濃縮出最佳的主題,以及尋找最佳成員之個別活動。(3)由成員縝密地製作計畫,由成員以外的人審視計畫內容,打造一個更為優質計劃的篩選活動。 為了推動Proprius21專案,東京大學係由產學合作研究推進部協助日本企業與校內研究人員進行個別的會議及研討會或研習營等活動,同時也針對企業在決定研究主題後,至計畫成案為止間之各階段提供各種支援。此外,該部人員也會接受來自產業界的諮詢,並在製作計畫之際,適當地介紹校內的職員,提供技術建議或審視計畫的內容等各種支援。
英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
美國總統歐巴馬簽署通過網路安全資訊分享法案(CISA)網路安全資訊分享法案(Cybersecurity Information Sharing Act,CISA)於2015年10月27日在「參議院」通過。接著眾議院於12月18日通過1.15兆美元的綜合預算法案,並將網路安全資訊分享法案夾帶在預算案中一併通過,最後美國總統歐巴馬亦在同日簽署通過使該法案生效,讓極具爭議的網路安全資訊分享法案偷渡成功。 網路安全資訊分享法案,建立了一個自願性的網路資訊安全分享之框架,其主要內容,在讓美國民間企業遭受網路攻擊或有相關跡象時,得以分享客戶個人資訊予其他公司或美國國土安全局等相關部門,同時並讓民間企業免除向公務機關洩漏客戶個資隱私等相關之法律責任。該法案目的係期盼藉由提高網路攻擊訊息共享度來改善網路安全問題。 該法案通過引發各界譁然。修正後的網路安全資訊分享法案去掉多數保護隱私權之條款,諸如分享客戶資訊時不用再遮掉無關的個人資訊、不再禁止政府利用這些個人資訊進行監控。 美國媒體批評該法案的通過是政府最可恥荒謬的行為之一。就隱私權層面,批評者認為,該網路安全資訊分享法案仍與監控密切結合,未能解決客戶個人資料被大量外洩的風險。就程序面而言,一個正式的網路安全資訊分享法案似乎不應被包裹在大額綜合預算法案中通過。該法案通過後之執行情形值得繼續觀察。
美國FDA將基因檢測以醫療器材列管美國FDA在七月間針對多家提供大眾基因檢測服務(direct-to-consumer genetic tests, DTI genetic tests)的公司發出通知函,表示將對該產業進行規管。FDA在各通知函中明白表示,其認為收信公司所提供的基因檢測服務,符合其主管之醫療器材管理法規對於體外診斷器材(in vitro diagnostics)之定義。根據美國聯邦法律,人類用醫療器材採用分級管理的概念,在上市前必須依其風險等級進行上市前通報或申請核准,以確保其分析與臨床之有效性。FDA認為,由於這些公司的基因檢測並未依法提出上市前通報或申請核准,涉有違法之嫌。 FDA採取此項措施,明顯是為了保護消費者,避免其受到未經臨床檢驗的檢測結果之誤導。然事實上國際間對於是否透過法令、以及如何規範大眾基因檢測服務,並無一致性看法。迄今,大眾基因檢測服務在許多國家都是在法令混沌未明的狀態下銷售,也引發了許多問題。對於FDA此一政策態度,有認為以法令方式規範此種服務,將會扼殺這個還在萌芽發展終的產業;也有認為,這算是對消費者遲來的保護。 大眾基因檢測服務的管理,顯示既有法令面對新興科技發展之管理窘迫性,也代表各國政府在保護消費大眾與促進新興產業發展之間,著實不易從中找到利益權衡之點,其科技管理面臨前所未有的新挑戰。