歐盟委員會於2024年10月17日通過了歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union,下稱NIS 2)的第一個實施條例(下稱「實施條例」)。NIS 2要求企業發生重大事件(Significant incident)後24小時內,應向會員國主管機關通報,依實施條例之規定,符合以下任一條件會被視為重大事件:
1. 造成超過50萬歐元或上一年度營業額5%以上的直接財務損失。
2. 造成商業機密洩漏。
3. 已造成或能造成自然人死亡。
4. 對自然人健康已造成或能造成大量傷害。
5. 疑似惡意且未經授權的存取網路和資訊系統造成嚴重運作中斷。
6. 反覆發生的事件。
7. 符合第5條至第14條特定資訊服務的事件。
實施條例主要在於補充上述條件的第6項及第7項。第6項規定於實施條例的第4條,定義「反覆發生」的要件,包含:(1)6個月內發生兩次;(2)有相同的根本原因;(3)大致符合超過50萬歐元或年營業額5%以上的直接財務損失。第7項則在實施條例的第5條至第14條列舉特定資訊服務提供者的重大事件條件,而其他資訊服務則包含DNS(domain name system)服務、TLD(top-level domain)網域註冊管理、雲端運算服務、資料中心服務、內容交換網路、託管服務、網路商城、搜尋引擎、社群網路服務、信託服務等,對於不同服務可能造成的影響各別列舉視為重大事件的條件。
歐盟委員會發布該實施條例確立何謂重大事件,並依歐盟考量資訊安全威脅所制定的NIS 2,將公共電子通訊網路或服務、會員國等進行連結,要求會員國設置資訊安全主管機關、危機管理機構、資訊安全聯絡點等義務,建立資訊安全通報機制,確保歐盟有整體的資訊安全戰略及框架,阻止潛在危機擴散。我國於2018年已制定《資通安全事件通報及應變辦法》並建立四級資通安全事件的標準,其標準以機敏或業務資訊遭洩漏對機密性的影響、資通系統遭竄改對完整性的影響,以及資通系統運作遭中斷對可用性的影響為依據,但並未對不同類型服務有制定更精細的定義。歐盟實施條例中有關重大事件之定義,可做為我國相關主管機關參考對象,研擬更準確的資通安全事件標準。
歐盟委員會在2020年1月提出之工作計畫中,即表示2020年第四季度將會提出新的《數位服務法案》《Digital Services Act》,以因應新興數位時代下的歐洲。 2020年10月29日歐盟競爭事務專員表示,幾個科技巨擘針對每天蒐集大量訊息並加以過濾篩選,最後傳遞予公眾有限數量消息的過程,將必須採取更多措施以清除非法及有害的內容,此舉旨在解決與大型社交媒體平台相關之兩大問題,即仇恨言論之傳播以及傷害社會公共對話與民主之言論。 該法案將規範科技公司須針對其行為製作報告,並告知使用者,他們所看到的廣告是由誰付費進行投放、為什麼他們會成為這支廣告的目標對象。蓋因科技公司之數位平台先是無償蒐集使用者個人資料及偏好,再針對這些資料進行分析後,對使用者量身訂製廣告行銷策略,最後科技公司依靠此套方法賺進大量廣告收益,例如,臉書與Google在2018年的廣告收入佔據總收入百分之九十八及百分之八十五以上。 該法案亦將針對科技公司篩選訊息,最後有選擇性的發送特定訊息予社會大眾及量身訂製置入廣告之行為,設立明確規則,羅列應作為或是不作為之清單。例如禁止推銷自己的服務,蓋阻止競爭對手向消費者提供更好的交易服務,等同於變相阻止消費者享受自由競爭和創新的成果;故將先設立協調一致之調查框架,提供一套統一的規則以調查數位服務市場已存之結構性問題,而後在必要時可以採取相關行動,使市場更加具有競爭力。歐盟預計將於2020年12月2日宣布《數位服務法》草案,在正式立法之前,會再與歐盟國家取得一致共識。
歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。 個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。 此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
日本經產省公布零售電力業指引修正案,以配合電力市場新制度之實施日本經濟產業省2018年9月公布《零售電力業指引》 (電力の小売営業に関する指針,以下稱「本指引」)修正案。 本次主要修正方向為零售電力業者購買電力時若有以下情形,應如何於電源結構表上說明供用電戶參考:(1)跨區調度電力:同年10月開始,零售電力業者若需跨區調度電力,改由日本電力交易所使用「間接競拍」(間接オークション)分配電力容量。故本指引配合規定,原則上以跨區調度取得之電力歸類於電源結構表的「電力交易所」中;(2)使用非化石價值證書:本指引規定,若零售電力業者自日本電力交易所購得非化石價值證書,可於電源結構表中標示使用非化石價值證書之電力配比,並註明如:「本公司販售之受再生能源躉購費率制度(FIT)補助之電力,係使用再生能源限定之非化石價值證書,具有以再生能源發電之實質價值。」;(3)販售特定電源方案:若零售電力業者提供用電戶特定的電源方案,本指引建議業者在製作電源結構表時,應先扣除總電量中特定電源方案之電量後,再計算餘下電量及配比,並註明如:「本公司向部分用戶販售內含水力發電20%以上之特定電源方案,其他非以特定電源方案進行銷售的電源結構請參考圖表。」若未先扣除再計算,也應在表中註明總電量中內含特定電源方案銷售之電量數據。(4)標示電力產地:若零售電力業者以電力產地做為賣點,可依電力來源於電源結構表中標示「自產自消」或「○○地域產電力」。
歐盟執委會發布人工智慧創新政策套案歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下: (1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。 (2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。 (3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。