英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。

由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下:

1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。

2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。

3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。

為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下:

1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。

2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。

實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性:

1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。

2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。

3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。

4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。

「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

相關連結
你可能會想參加
※ 英國發布人工智慧網路資安實務守則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=9370&no=57&tp=1 (最後瀏覽日:2025/07/29)
引註此篇文章
你可能還會想看
法國法院裁定亞馬遜網路書店(Amazom.com)停止書籍免運費之活動

  法國書商聯盟(Syndicat de la librairie française),於2004年一月對美國知名電子商務業者-「亞馬遜網路書店」(Amazon.com)所提出之違法書籍折扣及低於售價的訴訟,法國法院於今年十二月初做出裁定。該法院命令Amazon.com應於收到判決十天內對於所售出之書籍開始收取運費,否則必須受到每天一千歐元的罰款至該公司停止該不收取運費之行為止。同時該判決亦命令,Amazon.com應支付給原告書商聯盟十萬歐元的損害賠償金。   法國政府對於零售價格之法律規定十分嚴格,尤其對於書籍的零售。在法國,商家利用「價格犧牲」(Loss-Leaders)的促銷方式或其他低於產品價格的方式吸引顧客係為違法之行為;因此該國法律規定,關於書籍的零售商依法必須不得以低於出版商建議售價百分之五的價格出售書籍。Amazon.com所提供之折扣已經超過法國法律所規定之上限,故法國書商聯盟為保障其會員之權益,特別對該網站提出訴訟,以保護獨立小型書店之營運。Amazon.com尚未對上開判決發表正式的官方意見。

美國針對政府雲端運算應用之資訊安全與認可評估提案

  為建構政府雲發展的妥適環境,美國於今年度啟動「聯邦風險與認可管理計畫」(Federal Risk and Authorization Management Program, FedRAMP),由國家技術標準局(National Institute of Standards and Technology, NIST)、公共服務行政部(General Service Administration)、資訊長聯席會(CIO Council)及其他關連私部門團體、NGO及學者代表共同組成的跨部會團隊,針對外部服務提供者提供政府部門IT共享的情形,建構一個共同授權與持續監督機制。在歷經18個月的討論後,於今(2010)年11月提出「政府雲端資訊安全與認可評估」提案(Proposed Security Assessment & Authorization for U.S Government Cloud Computing),現正公開徵詢公眾意見。   在FedRAMP計畫中,首欲解決公部門應用雲端運算所衍伸的安全性認可問題,因此,其將研議出一套跨部門共通性風險管理程序。尤其是公部門導入雲端應用服務,終究會歸結到委外服務的管理,因此本計劃的進行,是希望能夠讓各部門透過一個機制,無論在雲端運算的應用及外部服務提供之衡量上,皆能依循跨機關的共通資訊安全評定流程,使聯邦資訊安全要求能夠協調應用,並強化風險管理及逐步達成效率化以節省管理成本。   而在上述「政府雲端資訊安全與認可評估」文件中,可分為三個重要範疇。在雲端運算安全資訊安全基準的部份,主要是以NIST Special Publication 800-535中的資訊安全控制項作為基礎;並依據資訊系統所處理、儲存與傳輸的聯邦資訊的敏感性與重要性,區分影響等級。另一部份,則著重在持續性的系統監控,主要是判定所部署的資訊安全控制,能否在不斷變動的環境中持續有效運作。最後,則是針對聯邦資訊共享架構,出示模範管理模式、方策與責任分配體系。

地方創生

  「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。   自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含: 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。   地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。

世界衛生組織透過「COVID-19疫苗全球取得機制COVAX」,促進疫苗研發及公平分配

  世界衛生組織(World Health Organization, WHO)於2020年8月24日公布「COVID-19疫苗全球取得機制(COVID-19 Vaccines Global Access Facility, COVAX)」,由全球疫苗與預防注射聯盟(Global Alliance for Vaccines and Immunisation, GAVI)、流行病預防創新聯盟(Coalition for Epidemic Preparedness Innovations, CEPI)及WHO共同主導,與多家疫苗廠商合作,協助取得多種疫苗組合的授權及核准,促進COVID-19全球疫苗研發及公平分配。   COVAX是WHO「獲取COVID- 19工具加速計畫(Access to COVID-19 Tools Accelerator, ACT Accelerator)」下的疫苗分配機制。ACT-Accelerator透過匯集各國政府、衛生機構、科學界、產業界、民間團體的力量,共同合作開發創新診斷方法、加速融資研發治療工具、制定公平分配與交付疫苗機制、確保衛生系統與社區網路連接等四大領域,以盡快結束大流行疫情。   COVAX作為COVID-19疫苗聯合採購機制,預計2021年底要提供20億劑疫苗,籌資181億美元;由GAVI與高收入國家簽訂投資契約,透過全球融資機制採購9.5億劑疫苗,同時搭配WHO制定的疫苗倫理分配架構,使COVAX能夠集中各國經濟體的購買力,保證候選疫苗的採購數量,鼓勵擁有專業知識的疫苗廠商盡速投入大規模的新疫苗生產,確保參與COVAX的國家及經濟體,皆能迅速、公平公正地取得大量有效的疫苗。   COVAX承諾將為全球92個中低收入經濟體提供參與COVAX的融資工具;超過80個高收入經濟體已提交參與COVAX的意向書,將從公共財政預算中編列全球疫苗研發的捐助資金,並與92個中低收入國家結成疫苗合作夥伴。透過COVAX機制產出的疫苗,將會按照參與國人口比例公平地分配給所有國家,並且優先提供疫苗給衛生醫療工作者、老年人及疾病弱勢群體;隨後再根據各國家需求、易受感染程度與COVID-19威脅情況,提供更多劑量的支援。

TOP