原預計於2017年3月2日生效實行的美國聯邦通訊委員會(Federal Communication Commission,FCC)的寬頻客戶隱私規定(Broadband Consumer Privacy Rules),委員會於2017年3月1日宣布暫停該規範效力,並與聯邦貿易委員會(Federal Trade Commission,FTC)發表共同聲明。
為保障資料安全(data security),聯邦通訊委員會於2016年10月27日,以寬頻網路服務提供者(broadband Internet Service Providers,ISPs)及其他電信營運商為規範對象,要求須給予客戶有更多選擇去決定自身資料如何被分享和使用,除將ISP所蒐集得使用及分享的資料分為三類,建立客戶同意要件,尚設立新的提醒要件及保密性違反之通知等。該新的隱私規範試圖與聯邦貿易委員會的規範做區隔,除管制對象不同,管制架構上,聯邦貿易委員會要求業者在蒐集及利用個人資訊時,須符合公平資訊實施原則(Fair Information Practice Principles,FIPPs)之準則(guidelines):通知(notice)、選擇(choice)、讀取(access)、安全(security)。
通過之際產生的爭議,包含聯邦通訊委員會有無管制權限,及實行後可能與聯邦貿易委員會管制架構並行而造成疊床架屋、混淆大眾等的問題;此外,聯邦通訊委員會收到眾多請願,要求重新考慮該規範之實行。請願理由在於該規範之實行將會造成寬頻網路服務提供者及其他電信營運商為了要遵循規範將承受巨大的成本與負擔,並且這些成本與負擔與公眾利益相違背,將會造成不可回復的損害。
在接受請願討論後,聯邦貿易委員會做出暫停實施的決定,認為有關保護資料安全的規範要件需要重新思考,其理由在於:(1)消費者若受到兩種不同的隱私管制方式,會破壞消費者對於線上隱私安全一致性的期待;(2)不應使寬頻網路服務提供者及其他電信營運商遭受重大且不必要的遵循成本。
聯邦通訊委員會也與聯邦貿易委員會共同發表聲明,其聲明提及:聯邦通訊委員會與聯邦貿易委員會皆有責保護美國消費者的線上隱私,然而最好的管制方法,應該是透過一個全面性且一致性的架構。資訊隱私之保護不應當有因管制對象不同而有差別性,況且其中差異僅有專業人士才能辨別出,就消費者保護來說,並行兩道不同管制只會造成混淆,毫無益處。這也是為何當聯邦通訊委員會片面剝奪聯邦貿易委員會的管制權限而引發批評聲浪。對於寬頻提供者應保護隱私與資料安全之要求,應回歸至聯邦貿易委員會,由於國家對網際網路空間的管制,上網行為應該要適用一樣的規則,並且受到同樣的專責機關管制。除此之外,聯邦通訊委員會與聯邦貿易委員將共同合作致力於協調對寬頻提供者的隱私規範,該規範將會同所有與數位經濟相關的公司遵循的標準。線上世界技術中立(technology-neutral)的隱私框架之一致性,方能對消費者帶來最佳利益。
本次聯邦通訊委員會迅速暫停實施的隱私規範,顯現出美國對於保障隱私管制的重視性極高,美國針對網路生態中的不同公司,寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等;網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等,將會有何種一致性的資料安全規範,值得持續關注。
《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。 《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括: 1.對決策過程進行描述,比較分析其利益、需求與預期用途; 2.識別並描述與利害關係人之協商及其建議; 3.對隱私風險和加強措施,進行持續性測試與評估; 4.記錄方法、指標、合適資料集以及成功執行之條件; 5.對執行測試和部署條件,進行持續性測試與評估(含不同群體); 6.對代理商提供風險和實踐方式之支援與培訓; 7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款; 8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄; 9.自透明度的角度評估消費者之權利; 10.以結構化方式識別可能的不利影響,並評估緩解策略; 11.描述開發、測試和部署過程之紀錄; 12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源; 13.無法遵守上述任一項要求者,應附理由說明之; 14.執行並記錄其他FTC 認為合適的研究和評估。 當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
英國展開「碳排放交易框架」修正意見徵集,擬將溫室氣體移除技術納入現行機制英格蘭、蘇格蘭、威爾斯政府,以及北愛爾蘭農業、環境和鄉村事務部於2024年5月23日共同提出「溫室氣體移除納入碳交易框架」(Integrating Greenhouse Gas Removals in the UK Emissions Trading Scheme)聯合諮詢文件,擬將「溫室氣體移除」(Greenhouse Gas Removals, GGRs)技術納入現行英國碳排放交易體系。GGRs係指主動將大氣中的溫室氣體移除之方法,又稱「二氧化碳移除」(Carbon Dioxide Removal, CDR)、「負碳技術」(Negative Emission Technologies, NETs),此類技術被認為能協助「難減排產業」減少排放。 此次意見徵集主要針對以下四大面向: 1.基本原則:將GGRs整合進UK ETS,須以維持減碳誘因、確保市場誠信、創造長期有效率的碳權交易市場、環境友善、具備可操作性、最小干預性、未來靈活性保障、考量財務影響等原則為基本前提。 2.總量管制:UK ETS於納入GGRs後,預計仍將維持當前總量上限,以避免實質上增加企業的排放容許量。 3.配額發給:GGRs能獲得的配額,擬採取「事後發給」的方式,於移除完成並經過驗證後,才發給配額,以維持交易市場的可信性。 4.市場整合:英國目前暫不考慮建立獨立的溫室氣體移除交易市場,擬將GGRs完全整合進既有的UK ETS中,並透過總量及需求控制或免費配額等措施調節市場供需,穩定並促進市場發展。 英國政府相信,透過將GGRs納入現行UK ETS中,可以增加企業對於碳移除之需求,提高負碳技術的投資誘因,進而持續對於淨零排放的目標有所貢獻。
德國聯邦內政部提出2025年數位政策計畫,加強推動國家行政數位化德國聯邦內政部(Bundesministerium des Innern und für Heimat, BMI)於2022年4月28日公布「數位德國-主權、安全性,及以公民為中心」(Digitales Deutschland – Souverän. Sicher. Bürgerzentriert.)政策文件。BMI作為確保網路與資訊安全,與政府機關數位轉型之聯邦主管機關,在「以公民和企業為數位行政之主要服務對象,並加強國家行政效率」之前提下,規劃2025年前預計達成之目標與具體措施,分述如下: (1)以公民與企業為中心的國家服務數位化:政府應以使用者導向(Nutzerorientierung)作為行政數位化的指導原則,推動簡易、具透明度,且可隨時隨地使用之數位行政服務,包含制定如何提供良好數位化行政服務之指引、調修《網路近用法》(Onlinezugangsgesetz)等。 (2)國家現代化:未來聯邦法律應於立法程序中,確認數位化之可行性,並刪除其中有關書面形式之要求。另應加強聯邦政府內部之系統整合、促進行政工作數位化,並透過訓練計畫讓員工適應數位化環境。 (3)資訊安全架構的現代化:調整德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)職權,強化BSI與資訊技術安全中央辦公室(Zentrale Stelle für Informationstechnik im Sicherheitsbereich, ZITiS)等資安主管機關之數位能力與技能。 (4)資料合法開放與使用:加強行政機關之資料能力與相關分析技能,並以歐盟「資料法案」(Data Act)為法律基礎,為資料品質與資料使用建立標準。 (5)強化數位主權(Digitalen Souveränität)與互通性:為確保國家在數位領域的長期能量,必須加強個人與公部門的數位能力,使其能在數位世界中獨立、自主與安全地發揮作用。與此同時,BMI亦與各邦及聯邦資訊技術合作組織(Föderale IT-Kooperation, FITKO)合作,建立可信賴之標準與介面,並借助開源軟體(Open-Source)、開放介面與開放標準,降低對個別技術供應商之依賴。
人工智慧即服務(AI as a Service, AIaaS)人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。 AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。