歐盟執委會公布《可信賴的AI政策及投資建議》

  歐盟執委會於2018年6月成立人工智慧高級專家組(The High-Level Expert Group on Artificial Intelligence, AI HLEG),主要負責兩項工作:(1)人工智慧倫理準則;(2)人工智慧政策與投資建議。並於2019年4月8日提出《可信賴的人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI),2019年6月公布之《可信賴的AI政策及投資建議》(Policy and Investment Recommendations for Trustworthy Artificial Intelligence)則是人工智慧高級專家組所交付之第二項具體成果。

  該報告主要分為兩大部分,首先第一部分是要透過可信賴的人工智慧建立對歐洲之正面影響,內容提及人工智慧應保護人類和社會,並促進歐洲公司各部門利用人工智慧及技術移轉,而公部門則扮演人工智慧增長及創新之催化劑,以確保歐洲具有世界一流之研究能力;第二部分則是影響歐洲各成員國建立可信賴之人工智慧,內容則提及將發展人工智慧相關基礎設施、教育措施、政策規範及資金投資,同時合法、有道德的使用各項數據。

  在本報告中關於法規面的建議則是進一步制定政策和監管框架,確保人工智慧在尊重人權、民主及創新下發展,因此將建立人工智慧政策制定者、開發者及用戶間的對話機制,若是遇到將對社會或是人類產生重大影響之敏感性人工智慧系統,除透過歐洲人工智慧聯盟(The European AI Alliance)進行對話之外,也需要在尊重各成員國之語言及文化多樣性下展開協調機制。另外,報告中也特別提到如果政府以「保護社會」為由建立一個普遍的人工智慧監督系統是非常危險的作法,政府應該承諾不對個人進行大規模監視,並在遵守法律及基本權利下進行人工智慧系統之發展。

相關連結
你可能會想參加
※ 歐盟執委會公布《可信賴的AI政策及投資建議》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=8274 (最後瀏覽日:2024/07/20)
引註此篇文章
你可能還會想看
歐盟針對數位革命之法制障礙展開討論

  歐盟布魯塞爾會議規劃組織(QED)在2016年12月針對第四次工業革命法制議題提出討論,呼應2016年4月歐盟執委會提出之歐洲產業數位化政策,加速標準建立,並且預計調整現行法律規制,著重於資料所有權、責任、安全、防護方面等支規定,討論重點如下: 1.目前面臨之法律空缺為何 2.歐洲產業數位化是否須建立一般性法律框架 3.標準化流程是否由由公部門或私部門負責 4.相容性問題應如何達改善途徑 5.資料所有權部分之問題如何因應 6.數位化之巨量資料應如何儲存與應用,雲端是否為最終解決方式 7.如何建立適當安全防護機制。 8.一般資料保護規則是否足以規範機器產生之數據 9.各會員國對於資料保護立法不同,其間如何調合朝向資料自由發展之方向進行   我國2016年7月由行政院通過「智慧機械產業推動方案」,期待未來朝向「智慧機械」產業化以及產業「智慧機械化」之目標進行,未來,相關法制配套規範,如個人資料保護、巨量資料應用、以及標準化等議題,皆有待進一步探討之必要。

WiMAX頻譜開放 攪亂一池春水

美國對法國數位服務稅採取301條款貿易報復

  美國貿易代表署(Office of the United States Trade Representative, USTR)於2020年7月10日針對法國數位服務稅(Digital Services Tax)首度採取「301條款」貿易報復。《1974年貿易法》第301條授權美國政府在對外之國際貿易協定未獲執行,或貿易夥伴採取不公平貿易行為時,進行調查及後續的貿易報復。法國作為全球第一個課徵數位服務稅的國家,法國國民議會於2019年7月11日通過數位服務稅,美國隨即於2019年7月16日開啟「301條款調查」並召開公聽會。美國貿易代表署於2019年12月6日發布調查報告(Report on France’s Digital Services Tax)指出法國數位服務稅是針對美國不合理或歧視性的貿易帳礙。美國總統川普和法國總理馬克宏於2020年1月23日達成暫緩數位服務稅課徵之共識,然而法國在6月再度實施數位服務稅。美國遂對法國啟動「301條款」貿易報復,貿易報復項目係法國進口美國的化妝品、手提包等貨品課徵25%的稅,受波及的貨品粗估高達13億美元。儘管美國企圖透過貿易報復作為警示,許多國家仍持續研擬採取或已經開始課徵數位服務稅。美國貿易代表署指出:「過去兩年,部分國家研擬或已經開始採取數位服務稅,而有相當多的證據可以證明數位服務稅是針對美國大型科技公司。」繼法國之後,美國貿易代表署於2020年6月2日再度開啟「301條款調查」,此次調查對象包括奧地利、巴西、捷克、歐盟、印度、印尼、義大利、西班牙、土耳其和英國等。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP