日本經產省公布「伊藤報告3.0版」和「價值協創指南2.0版」,強調企業永續發展重要性

  日本經濟產業省於2022年8月31日公布「伊藤報告3.0版」(伊藤レポート3.0)和「為協力創造價值之綜合揭露、對話指南2.0版」(価値協創のための統合的開示・対話ガイダンス2.0,簡稱價值協創指南),強調企業永續轉型重要性。所謂永續轉型,係指社會永續發展與企業永續發展必須「同步」,及企業為此需要在經營面和產業面進行之改革。

  「伊藤報告3.0版」整理企業推動永續轉型應採取之措施,包括必須根據社會永續性擘畫未來方向,並制定可實現長期價值之企業戰略、關鍵績效指標(Key Performance Indicators, KPI)、治理目標等。此外,伊藤報告也指出供應鏈全體(包含中堅、中小企業和新創企業等)和投資鏈上之參與者,都需要推動企業永續轉型。

  為強化企業經營以實現永續轉型,經濟產業省同步修正「價值協創指南2.0版」,調整企業資訊揭露及對話方式,讓過程可以更有效率及建設性。指南修正重點包括:(1)全部項目都強調為實現永續社會,企業長期且持續提供價值的重要性及因應方向;(2)新設長期戰略項目;(3)確保「氣候相關財務揭露(Task Force on Climate-related Financial Disclosures, TCFD)」所提出之治理、戰略、風險管理、指標與目標之揭露架構與整合性;(4)於項目「實施戰略(中期經營戰略等)」中,強調人才戰略和人才投資重要性;(5)新設實質對話、約定項目。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本經產省公布「伊藤報告3.0版」和「價值協創指南2.0版」,強調企業永續發展重要性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&i=0&d=8898 (最後瀏覽日:2024/04/19)
引註此篇文章
你可能還會想看
人工智慧專利加速審查計畫

  人工智慧專利加速審查計畫(Accelerated Initiative for Artificial Intelligence,又稱AI2)是新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2019年4月宣布之計畫,目的在於加快與人工智慧相關的專利申請程序。該計畫自2019年4月26日開始實施兩年,每年有50位名額。專利申請權人申請適用該計畫並申請專利者,最快可在6個月內審核通過並授證。   適用AI2計畫之技術主體需與AI發明領域密切有關,該申請案之AI功能包含自然語言學習(Natural Language Processing)、影像辨識、聲音辨識、自動化系統(Autonomous Systems)、機器人、預測分析(Predictive Analytics)等;並須應用在生命科學、醫學、農業、資通訊、交通等領域。   AI2與新加坡智財局2018年實施的「金融科技專利優速計畫」(FinTech Fast Track Initiative, FTFT)類似,FTFT旨在加速金融科技領域之專利申請及審查時效。除了技術主體不同,兩者在申請和審查程序上大致類似:不需支付額外的申請與審查費用、該項專利之首件申請案需於新加坡智財局提出、專利請求項(claims)最多為20項、該項專利之「請求專利核准」與「請求專利檢索審查」文件需於同一日提交、專利申請權人收到實質審查意見書需兩個月內回覆等。   人工智慧是新加坡轉型為數位經濟國家的關鍵,隨著全球AI專利申請活躍,新加坡智財局支持將AI產品更快地推向市場,並期望有利新加坡爭取更多新創企業及投資。

美國眾議院通過綠色化學研發法案

  美國眾議院本(9)月通過「2007年綠色化學研究發展法案」(The Green Chemistry Research and Development Act of 2007),其目的在要求總統建立「綠色化學研究發展計畫」(Green Chemistry Research and Development Program),統籌改善聯邦政府對於綠色化學研發、教育宣導及技術移轉等活動之資源投入,而綠色化學則是指那些依安全與有效生產程序製造高品質產品時、能減少使用或產生毒性化學物質之化學產品或製程技術。美國化學協會(American Chemical Society)讚許眾議院通過本法案是睿智的舉動,表示發展綠色化學最能證明經濟和環境得同時併進,發展綠色企業實務,改善藥學加工及本土營建產業以迎刃氣候變遷及能源危機等挑戰。   本法案並要求自明(2008)年起,編列經費由以下政府單位合作執行本計畫,即國家科學基金(National Science Foundation)、國家標準技術研究院(National Institute of Standards and Technology)、能源局(Department of Energy)及環保署(Environmental Protection Agency)。參議院在過去兩屆都通過類似的法案,尚等待參議院支持通過相同法案,以獲得生效。   為減低對石化原料的依賴、發展生物經濟,美國政府積極投入促進綠色科技、生質科技之研發活動,例如從農林廢棄物或副產品或其他來源開發再生性原物料供綠色化學使用。此外,美國政府亦資助建立了生質(biomass)能源及產品的網路圖書館(BioWeb);BioWeb所收錄的生質科技資訊、文獻,許多都是來自大學或國家實驗室著名研究人員,都會先經各領域專家進行嚴格的同儕審查(peer-review),再開給所有公眾瀏覽;BioWeb將會持續蒐羅各種基礎及應用科學知識,並擴充各種經濟及政策相關資訊。BioWeb的理想目標,是擴大規模成為最大最有價值的生質燃料、能源及產品公共資料庫。

歐盟發布《營業秘密訴訟趨勢報告》指出,企業應明確界定營業秘密範圍與強化保密措施之落實

歐盟智慧財產局(EUIPO)於2023年6月底發布了《歐盟營業秘密訴訟趨勢報告》(Trade Secrets Litigation Trends in the EU),本報告包含三大部分,分別為判決之量化分析、法律要件之質化分析、各會員國之重要判決摘要,內容涵蓋了2017年1月1日至2022年10月31日間,27個會員國的695個訴訟案件。其重點摘要如下: 一、案件涉及之類型分析 1、約41%的案件與離職員工有關。 2、約17%的案件與商業合作對象有關。 3、約30%的案件雙方無明確的契約關係(但報告中指出此項統計包含員工離職後自行創業,原告以該離職員工及該公司為被告的情況)。 二、案件涉及之營業秘密標的分析(同一訴訟案件可能包含多個標的) 1、約62%的標的為「商業性營業秘密」。其中配銷通路(distribution methods)、廣告策略、行銷資料、客戶名單等供應鏈「下游資訊」(downstream information)占31%最多;定價模式及會計資料等「財務資訊」占13%次之。 2、約33%的標的為「技術性營業秘密」,其中有19%與「製程」(manufacturing process)有關。 3、僅3%的標的為原型(prototypes)或尚未公開的產品設計。 三、案件涉及之產業別分析(根據「歐盟標準行業分類第二修正版NACE Rev. 2」分類) 整體來說,歐盟營業秘密訴訟案件所涉及的產業別相當多元,簡要說明如下: 1、排名第一的產業別為「製造業」(manufacturing),占32%。其中最常涉訟的子產業別為「機械設備製造業」(manufacture of machinery and equipment)及「化學製品製造業」(manufacture of chemicals and chemical products)。 2、排名第二的產業別為「批發及零售業;汽機車維修業」(wholesale and retail trade;repair of motor vehicles and motorcycles)占11%。 3、排名第三的產業別為「金融及保險業」(financial and insurance activities)及「專業、科學及技術服務業」(professional, scientific and technical activities),分別占7%。 四、被告提出之抗辯分析 報告中指出,原告提出之營業秘密主張被法院採認的比例僅27%,有約73%的案件法院最終是做出有利於被告的認定。而被告最常提出的抗辯,第一為抗辯原告所主張之系爭資訊是普遍共知(generally known),不具備秘密性;第二為抗辯原告未採取合理保密措施。 最後,報告結論分析歐盟營業秘密判決的三大趨勢,其中一項趨勢指出,營業秘密所有人若要強化契約措施(如保密協議)於訴訟中的證明力,應明確識別與界定系爭營業秘密的範圍。因此,企業應建立營業秘密管理的整體政策(譬如與員工簽訂之勞動契約中,應明確界定其保密義務範圍;員工離職時應落實離職面談,再次提醒員工應遵守的保密義務範圍等),以便於發生爭議時有效主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

TOP