日本用老鼠複製人類腎臟

 

 

  日本慈惠醫科大學研究人員用人類幹細胞,植入實驗鼠胚胎中,培育出具有人基因的複製腎,能過濾尿液。


  研究人員先把生成腎臟的神經營養因子基因植入骨髓含有的幹細胞,然後在實驗鼠胚胎未生成腎臟前,將幹細胞注入胚胎中可生成腎臟的部位。隨後,研究人員摘出胚胎中相當於腎臟的部分。經過六天的培養,這部分組織長出了讓腎臟發揮功能的腎單位及其周圍的腎間質。基因檢查結果確認該腎臟是由人的骨髓幹細胞生成。研究人員再將這一"複製腎"移植到其他實驗鼠的腹部,約二周時間後,"複製腎"生長到一百五十毫克。


  利用骨髓幹細胞進行再生醫療,生成皮膚和軟骨等已經進入實用階段,但利用動物再生人類器官還沒有先例。參加研究的橫尾隆認為,從理論上說,用這種方法生成的器官不會發生排異反應。除腎臟外,這種方法還可用來生成胰腺和肝臟。

 

本文為「經濟部產業技術司科技專案成果」

※ 日本用老鼠複製人類腎臟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=1&d=246 (最後瀏覽日:2025/11/09)
引註此篇文章
你可能還會想看
美國國家標準與技術研究院「隱私框架1.0版」

  美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。   NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。   本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。

歐盟執委會提出《歐洲晶片法案》應對半導體短缺並加強歐洲技術領先地位

  歐盟執委會於2022年2月8日提出《歐洲晶片法案》(European Chips Act),以確保歐盟在半導體技術和應用的供應鏈安全、彈性和技術領先地位。近來全球半導體短缺,迫使汽車及醫療保健設備等眾多領域工廠關閉,部分歐盟成員國的汽車產量於2021年下降三分之一,顯示在複雜的全球地緣政治背景下,半導體價值鏈極度依賴數量有限的參與者。《歐洲晶片法案》將動員公共及私人投資歐洲半導體產業,金額超過430億歐元;並制定政策措施以預防、準備、預測和迅速應對未來任何供應鏈中斷情形,幫助歐盟實現2030年將現行晶片市場占比提升至20%的願景。《歐洲晶片法案》共分成八大章節,涵蓋歐洲晶片倡議、供應安全、監測和危機應對、治理模式、保密處罰及程序等議題。其中《歐洲晶片法案》主要由三大支柱組成,規範內容如下: 支柱一:歐洲晶片倡議(法案第3條至第9條)。歐洲晶片倡議將對現有關鍵數位技術重新進行戰略定位,以強化歐盟成員國和相關第三國及私營部門的「晶片聯合資源承諾」。歐盟預計將投入110億歐元用於加強研究、開發和創新,以確保部署先進半導體工具、原型設計實驗產線、測試和用於創新生活應用的新設備,培訓員工深入了解半導體生態系統和價值鏈。 支柱二:供應安全(法案第10條至第14條)。建立半導體「集成生產設施(Integrated Production Facility, IPF)」和「開放歐盟代工廠(Open EU Foundry, OEF)」,透過吸引投資與提高生產能力來建立供應安全的新框架,用以發展先進節點創新及節能晶片。此外,晶片基金將為新創企業提供融資管道,協助技術成熟並吸引投資者;投資歐洲基金(Invest EU)將設置專屬半導體股權投資的選項,以擴大歐洲半導體研發規模。 支柱三:監測和危機應對(法案第15條至第22條)。建立歐盟成員國和執委會間的協調機制,用以監測半導體供應、估計需求和預測短缺。透過蒐集企業的關鍵情報能發現歐洲主要弱點和瓶頸,從而監控半導體價值鏈穩定。歐盟將彙整危機評估報告並協調各成員國採取歐盟建議的應對方案,以便共同做出迅速正確的決定。

美國國家標準與技術研究院公布物聯網設備核心網路安全基礎指南草案

  美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2019年8月1 日公布「安全物聯網設備之核心網路安全特徵基準(Core Cybersecurity Feature Baseline for Securable IoT Devices)」指南草案,提出供製造商參考之物聯網設備網路安全基本要素,該指南草案中提出幾項重要核心要素如下: 設備辨識:物聯網設備必須有可供辨識之相關途徑,例如產品序號或是當連接網路時有具獨特性之網路位址。 設備配置:獲得授權之使用者應可改變設備的軟體以及韌體(firmware)之配置,例如許多物聯網設備具有可改變其功能或是管理安全特性之途徑。 資料保護:物聯網設備如何保障其所儲存以及傳送之資料不被未經授權者使用,應清楚可被知悉,例如有些設備利用加密來隱蔽其儲存之資料。 合理近用之介面:設備應限制近用途徑,例如物聯網設備以及其支持之軟體應蒐集並認證嘗試近用其設備的使用者資訊,例如透過使用者名稱與密碼等。 軟體與韌體更新:設備之軟體應可透過安全且可被調整之機制進行更新,例如有些物聯網設備可自動的自其製造商取得更新資訊,並且幾乎不需要使用者特別之動作。 網路安全事件紀錄:物聯網設備應可記錄網路安全事件並且應使這些紀錄讓所有人或製造商可取得,這些紀錄可幫助使用者與開發者辨識設備之弱點以近一步修復。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP