網路中立管轄權屬誰?FCC尋求法院支持

  美國聯邦上訴法院哥倫比亞巡迴分院(US Court of Appeals for the District of Columbia Circuit)於2010年1月12日,針對網路中立議題召開口頭辯論聽證會。該案上訴人為美國目前電視及網路服務市佔率最高的Comcast所提出,系爭案由為聯邦通信委員會(Federal Communication Commission, FCC)於2008年禁止網路服務提供者(Internet Services Provider, ISP)限制其用戶使用BitTorrent。

 

  BitTorrent為一種常見的點對點傳輸程式,多用以線上檔案分享。該公司認為,FCC並沒有足夠的權力要求其不分用戶等級,全部提供毫無限制的服務;而FCC卻從保護消費者及網路應開放自由進入的角度辯述,從而使FCC是否有權力規範網路中立(Internet Neutrality)之議題邁入更激烈的討論。

 

  所謂「網路中立」,意指網路服務提供者不得因傳送或下載資訊種類差異而提供不平等的流量服務。早在2005年,FCC即有一套管制網路服務提供者侵害網路中立的審查標準,但該標準並非為一體適用的法律位階,而FCC是否得依職權制定網路中立的規範,一直以來亦有所爭議,是故此次其與Comcast對簿公堂,FCC最終目的即是在尋求法院之見解,希冀獲得聯邦法院的支持而使其立法行動名正言順。

 

  對此,聯邦最高法院原則上認同FCC以往對於「資訊服務」的見解,亦即,由於傳統電信服務往往與重大基礎建設相關,尤其是網路開放接取的相關規定,FCC應提高其管制密度;而屬低度管制的資訊服務(Lightly Regulated Information Service)則不應與電信服務有相同的對待;是故Comcast據認在網路中立尚未有明確權責規劃前,FCC實無權插手管控Comcast所提供之資訊服務。此外,該公司亦提出,類似BitTorrent的點對點傳輸應用程式往往用於大量檔案的交換,無限制地提供所有用戶使用,不但造成整體網路服務效能下降,由於傳輸的內容往往為影音檔案,亦間接侵害了Comcast本身的電視業務。

 

  對此,雙方目前仍各執一詞,由於案件目前尚在上訴法院審理,FCC此次投石問路的策略是否成功還在未定之天,但可以確定的是,不論法院的見解為何,網路中立的爭議恐將持續發酵,並對後續網路服務提供之發展產生一定影響。

相關連結
※ 網路中立管轄權屬誰?FCC尋求法院支持, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=1&d=3228 (最後瀏覽日:2025/07/02)
引註此篇文章
你可能還會想看
半導體面板設備 進口將免關稅

  工業局預計明年和財政部研商修改海關進口稅則,給予廠商進口國內無產製的半導體、面板設備的關鍵零組件時,免課關稅的優惠,以提升國內兩兆產業自給率,在2008年分別提升至25%和50%的水準。包括奇美、彩晶、華映等面板廠都對提高設備自給率很有興趣。工業局指出,全球面板業市場,已成為我國和韓國互相較勁的局面,韓國目前設備自給率已達40%,並計畫在2008年達到80%水準,但我國面板設備自給率目前只有12%,不但主控權掌握在外國設備廠手裡,利潤也被賺走。如果國內面板廠可以提高設備自給率,可以節省成本30%至50%,獲利將可以大幅提高。   工業局表示,由於我國半導體與平面顯示器兩兆產業在晶圓代工帶動下及筆記型電腦與LCD顯示器的大量需求下持續成長,除產值大幅成長外,在設備需求上,台灣將分別占有15%及40%以上的全球市場,國內每年設備投資總額也將高達2,000億元以上,但是卻有九成以上仰賴進口。除了以租稅減免,提高國內面板及設備業者投入設備研發、生產的誘因外,工業局明年起每年也將投入近億元的經費,以科專計畫、主導性新產品研發補助等,協助國內設備業者提升研發及生產能力。   由於我國已成為全球半導體及面板的重要生產廠商,每年進口設備金額十分龐大,工業局也將運用此優勢,吸引國外大廠來台設立研發中心或與國內設備業者合作,投資生產製程設備。為鼓勵兩兆產業中心廠使用國產設備,對使用國產設備達一定比例之廠商,工業局也將研議相關的獎勵措施。

從英國 NHS 國家 IT 計畫看電子病歷之推動:以病患個人資訊隱私保護為中心

WIPO公布《2018年世界智慧財產權指標報告》 中國大陸驅使全球申請量再創新高

  世界智慧財產權組織(World Intellectual Property Organization;後稱WIPO)針對2017年智財活動相關數據於12月3日公布《2018年世界智慧財產權指標報告》,內容分為:(1)專利、(2)商標、(3)工業設計、(4)植物品種、(5)地理標誌、及(6)創意經濟(出版)等六大項目。   其中「創意經濟」為首度納入之項目。WIPO與「國際出版人協會(International Publishers Association, IPA)」共同調查28個國家的出版活動,本次僅完成基本統計且初步納入「貿易」、「教育」、「科技與醫療(scientific, technical and medical, STM)」三個出版議題。法國在「貿易」方面的出版營收佔69%、英國50%;「教育」佔葉門總出版營收68.2%、巴西62%;「科技與醫療」佔比利時46.1%、巴西37.9%。   2017年專利全球申請量達317萬件(相較於2016年成長5.8%)、商標申請量達1,239萬件(成長26.8%)、工業設計申請量超過124萬件(與前一年持平)。以中國大陸為首,專利申請量佔全球43.6%、商標申請量佔46.3%、工業設計申請量佔50.6%。   2017年植物品種申請量計有18,490件、成長率為11.7%,此為15年來最大增長,而以中國大陸、英國、歐盟、越南及烏克蘭為主要成長國家。其中中國大陸接獲4,465件植物品種申請、其次歐盟為3,422件,這也是23年來第一次歐盟未列為首位。   地理標誌之問卷在2016年重新調修,2017年首度完整納入54個地區的數據,計有59,500個受保護的地理標誌。其中,德國有14,073個、奧地利8,749個、中國大陸8,507個。若以類別區分,「酒類」佔57.1%,其次為「農產食品」28.2%、「手工藝品」約2.7%。   本次報告之特別議題為「藉由統計數據掌握專利訴訟活動」,另針對美國與英國之統計數據進行探討。美國在1999至2009年間之專利訴訟案件和緩上升,並在2009至2013年間顯著增加;而英國在2010至2012年間也呈現相同趨勢,原因在於此時正值「全球專利戰」時期。進一步分析訴訟數據,可以發現專利訴訟案量往往與專利申請量、專利實施具正相關性,例如2013年後美國專利申請量及專利實施量呈下降趨勢,同期美國地方法院之專利訴訟案量亦隨之減少。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP