今(2011)年3月中旬,印度製藥業者代表及相關非政府組織團體共同對外表示,就印度與歐盟即將簽署之自由貿易協議(Free Trade Agreement;簡稱FTA),將正式採取反對之立場。
關於上述印度製藥業者代表及非政府組織團體之所以表示反對歐-印兩國簽署FTA之理由,其主要,乃係因歐盟方面為保障歐盟自身製藥業者本身之利益而擬於日後雙方將所簽署之FTA文件中,設置「資料專屬」條款而生;對此,代表印度境內多家藥廠之印度製藥協會(Indian Pharmaceutical Alliance)秘書長Dilip Shah表示:「目前歐盟方面正利用各種高壓與不正之手段,來迫使印度政府同意其擬置入之資料專屬保護條款」;但歐盟官員John Clancy卻解釋:「歐盟政府之所以擬於將簽訂之FTA中設置資料專屬條款,所寄望者,無非是要為歐盟境內製藥業者,尋求一個平等互惠之立基點而已;換言之,歐盟政府所為之一切,乃是基於要為印度與歐盟兩國業者打造一個公平合理之貿易商業環境」,另外,其還強調:「針對資料專屬條款之簽訂,原則上應在雙方達成共識之前提下進行」。
雖然歐盟方面目前已嘗試作出如上解釋,但印度國內各界似仍普遍認為,一旦同意將資料專屬條款納入,未來除將嚴重影響廣大用藥病患近用低價救命藥品之權益外,亦將大幅限制新興國家產製學名藥品之能力;故包括HIV病患及其他印度民間團體共計超過2000名抗議者,於今年3月2日時,皆紛紛走上新德里市中心街頭,對歐-印即將簽署FTA表達其強烈之抗議與不滿;足見,該項條款將造成之實質影響,絕非歐盟單方三言兩語即可輕描淡寫地帶過;而最終之談判結果,是歐盟方面將作出合理之讓步?還是印度方面為挽最大貿易夥伴之心,而終以犧牲廣大病患及國內製藥業者權益來作為可能之對價?是破局?還是完滿結局?則皆有待後續觀察,方見分曉。
本文為「經濟部產業技術司科技專案成果」
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國Uber被訴利用軟體應用程式追蹤用戶位置資訊美國電子隱私資訊中心(The Electronic Privacy Information Center, EPIC)向聯邦貿易委員會(Federal Trade Commission, FTC)檢舉Uber利用手機軟體"God view"追蹤並蒐集軟體用戶(乘客)位置資訊,並利用該資訊發送廣告給乘客。EPIC主張該作法為違法、詐欺的商業模式。 議員Al Franken對該軟體用戶服務條款也提出質疑,因該服務條款載明即使用戶終止使用,該軟體仍將繼續蒐集用戶的位置資訊,並可無限期使用用戶的個人資料。雖然Uber後續對該服務條款進行增修,但仍對外主張保有最後解釋的權利。 EPIC認為目前依「駕駛隱私法」(Driver's Privacy Act )的規定,除具要求提供車輛資料的法源依據,或個人同意並被告知資料將如何使用之情形,才可以蒐集該車輛資料以維護駕駛隱私,否則不得蒐集與該車輛的任何記錄與資料。然而,EPIC亦認為應立法禁止使用軟體追蹤乘客與蒐集其資料。EPIC同時也建議應制定法規限制 Google、Facebook、Whatsapp、Snapchat等公司追蹤及蒐集顧客資料。對此,Facebook僅表示會確保用戶的位置資訊不被濫用,而Google則拒絕對此發表評論。 另外,EPIC認為Uber蒐集用戶位置資訊,並隨著時間的推移來追蹤用戶(乘客)動向資料並進行廣告行銷,對用戶的隱私權保護並不完整,且用戶資料也有被盜取之可能,因此,EPIC希望FTC能對Uber"God view"軟體進行調查,希望促成規制用戶(乘客)資料蒐集、處理與利用的商業模式。
美國專利與商標局推出COVID-19專利優先審查領航計畫因應嚴峻的新冠肺炎,美國專利與商標局(United States Patent and Trademark Office, USPTO)於2020年5月8日公布「COVID-19專利優先審查領航計畫」(COVID-19 Prioritized Examination Pilot Program)。本領航計畫的法源依據是《美國專利法》第1.183條,授權局長在極特殊的狀況下,更改專利審查規則。本專利優先審查領航計畫之重點有二:其一,原本優先審查必須繳交相關的費用,本計畫針對小型或微型機構給予免費優待。其二,優先審查以12個月內完成最終處置(Final Disposition)為目標,並期待在6個月內完成。所謂最終處置包含:寄出核准領證通知(the mailing of a notice of allowance)、寄出最終核駁通知(the mailing of a final Office action)、請求延續審查(the filing of an RCE)、放棄申請(abandonment of the application)、提出上訴通知(the filing of a Notice of Appeal)。 美國專利與商標局局長Andrei Iancu表示:「獨立發明人與小型企業創新能力不亞於大企業,固有必要在對抗大型全球流行疾病給予有利的援助。為此,美國專利與商標局政策上給予小型或微型機構優先審查的程序優待,企盼加速其所提出之新冠肺炎相關的專利審查。」本計畫適用對象僅限於合於條件的小型或微型機構(Small or Micro Entity)。按美國專利審查程序指南(Manual of Patent Examining Procedure, MPEP)第509.02及509.04條,所謂小型機構係指個人、少於500人之公司、非營利組織和大學;微型機構則是指該機構作為申請人或投資人,其前一年年收入,少於美國家庭年收入中位數的三倍。 本專利優先審查領航計畫的專利請求項,必須是美國食品藥品監督管理局(United States Food and Drug Administration, FDA)批准,用以預防或治療新冠肺炎的產品或方法,包含但不限於:試驗用新藥(Investigational New Drug, IND)申請、臨床試驗器材豁免(Investigational Device Exemption, IDE)、新藥申請(New Drug Application, NDA)、生物製劑許可申請(Biologics License Application, BLA)、上市前許可(Premarket Approval, PMA)或緊急使用授權(Emergency Use Authorization, EUA)。
美國交通部發布國家道路安全戰略,建立五大核心目標期待實現道路零死亡願景美國交通部(U.S. Department of Transportation)於2022年1月27日發布「國家道路安全戰略」(National Roadway Safety Strategy, NRSS),向道路零死亡的長期目標邁出第一步。NRSS採取「安全系統方法」(Safe System approach)作為解決道路安全問題的指導性框架,其內容涵蓋行為干預(behavioral interventions)、道路應對措施(roadway countermeasures)、法律與政策之執行、車輛安全特性與性能,及緊急醫療照護等層面。不同於傳統安全方法,安全系統方法承認人為錯誤與人性脆弱的事實,基於道路死亡應可預防之原則,利用可提前準備的主動工具(Proactive Tools)預先識別並解決交通系統中的問題,並且建立一套能有效解決或降低風險的備援系統(redundant system),以確保某一環節發生故障時,其餘部份仍可正常運作。 NRSS將以五大核心目標為主軸,規劃全面性的安全措施,以實現道路零死亡願景。上述五大核心目標包括: (1)更安全的人們(safer people):鼓勵用路人採取安全、負責之行為,避免酒駕或毒駕等危險行為。 (2)更安全的道路(safer roads):設計可減少人為錯誤之道路環境,提高脆弱用路人安全移動之可能性。 (3)更安全的車輛(safer vehicles):透過改進既有技術與設備,並擴大對有效防止碰撞及使影響最小化的車輛技術與功能之使用,提高車輛安全性並降低碰撞頻率,例如:透過先進駕駛輔助系統(Advanced Driver. Assistance Systems, ADAS)預防或減輕碰撞的影響;或是利用偏離車道警示系統對車輛進行監控與紀錄,如檢測到車輛偏離車道,則立即向駕駛發出警報。此外應建立公共資訊資料庫,以便提供資訊幫助車輛安全行駛。 (4)更安全的速度(safer speeds):透過結合環境的道路設計、教育與推廣活動,以及活用自動測速器、依路段環境進行速限等方式,有效控制車輛行駛速度。 (5)事故後照護(post-crash care):透過完善緊急醫療照護提高事故存活率,並落實交通事故管理,避免事故再次發生。