今(2018)年2月,一家成立於2013年、位於美國維吉尼亞州的雲端策略服務公司REAN Cloud Llc.以其他交易(Other Transaction, OT)模式獲得了美國國防部(Department of Defense)5年合計9.5億美金的合約,讓OT自2016年10 U.S. Code §2371b正式生效進一步確認美國國防部針對原型(Prototype)及其後續之產品開發適用OT以來[1],再次引起討論。
OT源於冷戰時期的美國,主要用於讓聯邦政府部門取得尖端國防技術的研究與發展(Research and Development, R & D)成果和原型。OT並非傳統之契約(contract)、授權書(grant)或合作協議(cooperative agreement),且法並無明確定義OT究竟實質內容為何。OT不受聯邦併購規則(Federal Acquisition Regulation, FAR)所規範,更接近一般私人商業契約,因此具備極大的合作彈性,可大幅度縮短私部門與政府合作常碰到的冗長時程。由於OT快速、彈性的這兩項特質,近年來應用於國防以外之新創或尖端科技之公私合作亦逐漸普遍。
然OT雖然簡化了政府採購的時程與限制,但同時也減少了問責可能性和透明度,因此目前只限具備美國國會授予其他交易授權(Other Transaction Authority, OTA)的聯邦政府機構得以使用OT。在美國計有太空總署(NASA)、美國國防部、美國聯邦航空總署(Federal Aviation Administration)、美國運輸部(Department of Transportation)、國土安全部(Department of Homeland Security)、運輸安全管理局(Transportation Security Administration)、衛生與公共服務部(Department of Health and Human Services)、美國能源部(Department of Energy)獲得國會授予OTA,其餘未獲OTA之政府部門僅得以在聯邦預算管理局(Office of Management and Budget)主任授權下有條件地使用OT。
尖端技術的R&D在不同領域皆有其特殊性,難以一體適用FAR,是以OT在實務運作上為兼顧持有尖端技術的公司重視速度和營業秘密之特質與採購之公平性,其運作模式通常為:聯邦政府成立某種技術領域的OT聯盟(consortium),私部門的潛在締約者可以申請加入,繳交會費並同意該聯盟的約定條款。聯盟之約定條款通常較政府採購契約來的有彈性,例如智慧財產權的歸屬是以個案個別約定。擁有OTA之政府機關嗣後可向聯盟成員徵求產品或服務白皮書,之後再從中挑選優秀者進一步繳交更詳細的產品或服務計畫書,最終經由聯盟管理機構(consortium management organization)挑選出最適者。
OT與OT聯盟的運作模式,為公私合作提供極大的法律彈性,且非常迅速。平均而言,從政府徵求白皮書到成功找到最適者,不過兩個月時間。時間與彈性乃是新創企業或尖端技術持有者與政府合作時最有疑慮之處,OT可以解決此一問題。然需注意OT在適用上仍存在諸多挑戰,例如成效難以評估、較不透明導致監督困難、智慧財產權歸屬爭議等,有待克服。
[1] 美國國防部在此前乃是遵循Section 845 of the National Defense Authorization Act(NDAA) for Fiscal Year(FY) 1994, Public Law 103-160適用OT。
當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
美國發布《新興科技優先審查架構》 加速政府機構導入AI技術美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。 一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。 現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術: 1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。 2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。 3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。 4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。 美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。 《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。
美國國會審議「整合公共示警和警告系統現代化法案」為強化智慧聯網資通訊技術之整合,推動防救災之智慧化,美國國會眾議員Gus M. Bilirakis於2013年10月10日提出「整合公共示警和警告系統現代化法案」(Integrated Public Alert and Warning System Modernization Act of 2013, H.R. 3283),該法案修正「2002年國土安全法」(Homeland Security Act of 2002)第5章,加入了第526條款,進行國家公共示警和警告系統之現代化工作。 「整合公共示警和警告系統現代化法案」要求聯邦政府應積極進行相關可經驗證和測試研發技術之使用可行性,並強化公共示警和警告之傳遞與傳播,關於預期達成之目標則為: (1) 增強更高安全性、可靠性,並強化聯邦政府的警報和預警能力; (2) 快速預警傳播效率; (3) 改善通知遠程位置之能力; (4) 增強定位地理目標能力,以及 (5) 傳遞多種通信方式提供警報和預警的能力,其也規範聯邦政府應制訂調整政府之共同警報和預警協議、標準、名詞術語定義,以及公共警報和預警系統的操作流程。法案更採用多元化傳遞機制,來傳播國土安全資訊和其他警告資訊給公眾,從而觸及最多數人,聯邦政府更應加強研發及採用各種未來科學技術及整合應用。 其次,法案乃要求應設立「整合公共警報和預警系統諮詢委員會」,除了聯邦政府及地方政府官員代表須參加外,並應納入民間產業參與等意見諮詢,特別是明訂應結合: (1) 通信服務提供商; (2) 系統、設施、設備,並提供通訊服務能力之廠商、開發者和製造商; (3) 第三方服務者 (4) 傳播產業; (5)手機產業; (6) 寬頻產業; (7) 衛星產業等。並且,為了促進地方和整體區域合作,提倡公私夥伴合作關係,強化社區防範和因應,乃特別強調「商用行動通訊服務提供者」(Participating Commercial Mobile Service Provider)之參與和角色定位,依定義,乃指稱「被選定自願性參與負責公共警示情報傳遞之商用行動通訊服務提供者」。 截至2014年4月底,本法案已在眾議院委員會待審,相關立法趨勢與發展當持續關注之。
歐盟資通安全局發布《物聯網安全準則-安全的物聯網供應鏈》歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。 本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。 總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。