德國法院判決Google沒有進行事先審查網站內容之義務

  德國最高法院在2018年2月27日判決,Google在搜尋結果連結顯示之前,並無須確認該網站是否存在毀謗性言論,亦即,Google沒有義務事先審查搜尋結果中連結的內容。

  此案件的背景是由兩個受到網路言論攻擊的人所提出,其主張為防止其他網路使用者攻擊他們言論的網站出現在Google搜尋結果的連結上,因此希望Google其中的一個部門—Alphabet公司,設置搜尋過濾器,就用戶曾經在網站上發表過不良評論以及損害賠償的相關資訊不會在未來的搜尋結果出現。

  本案涉及關於「被遺忘權」(“Right To Be Forgotten”)的討論,所謂被遺忘權是由2014年5月,歐盟法院(ECJ)所作成之裁定,即人們可以要求Google和微軟Bing(MSFT.O)等搜尋引擎於搜尋人名出現的網頁結果中,刪除不適當或不相關的訊息。

  本案中,對於Google沒有對搜尋結果進行過濾,Google是否因此有侵害被遺忘權之爭議,德國最高法院表示,搜尋引擎經營者僅須於收到明確且具識別性侵犯個人權利的通知時,採取相關行動即可,並毋須事先檢查該網站之內容是否合法。蓋立法者及社會皆普遍認為,若將搜尋引擎審查網站的內容定為其一般性義務,則其商業模式的本質將備受嚴重質疑,且又由於數據具有管理上的困難性,若無此類搜尋引擎的幫助,人們不可能在網路上獲得有實質有意義的使用,因此搜尋引擎不須將此列為其義務。

相關連結
你可能會想參加
※ 德國法院判決Google沒有進行事先審查網站內容之義務, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=1&d=8016 (最後瀏覽日:2025/03/29)
引註此篇文章
你可能還會想看
德國慕尼黑地方法院日前認定特斯拉關於「Autopilot」等銷售(廣告)標示將誤導消費者

  自特斯拉(Tesla)推行Autopilot(此於特斯拉之繁體中文官網譯作自動輔助駕駛)以降,其原先宣稱可免手動(Hands free),但經美國國家公路交通安全管理局(National Highway Traffic Safety Administration,NHTSA)指摘特斯拉前述宣稱可能使駕駛人注意力渙散而發生事故,似乎影響近年來特斯拉對於其自動輔助駕駛系統之論調,而改要求駕駛人即便開啟該系統仍須將手放置於方向盤上。除了前揭特斯拉於車輛銷售(廣告)資訊所生的爭議外,日前2020年7月間德國慕尼黑第一地方法院(Landgericht München I)之合議庭的判決,認定特斯拉於其車輛(Model 3)之銷售(廣告)標示資訊的整體,以及原告競爭中心(Wettbewerbszentrale)所分別主張之內容,均屬不正當競爭防制法(Gesetz gegen den unlauteren Wettbewerb,UWG)第5條第1項第2句第1款之誤導性商業行為(Irreführende geschäftliche Handlungen,或譯作引人錯誤之交易行為)。   本件之爭點核心在於特斯拉現行車輛既有配備之Autopilot系統,以及消費者可自行選購之Volles Potenzial für autonomes Fahren(德文直譯:具備完全自動駕駛潛力,而特斯拉之繁體中文官網譯作全自動輔助駕駛)系統等用詞,因其等涉及車輛功能與設備之決定性概念和資訊,則與現行「車輛駕駛輔助系統」(Fahrassistenzsystem)存有落差,進而導致消費者理解與實際情況不一致之情形。   法院認定理由在於不論特斯拉之Autopilot或Volles Potenzial für autonomes Fahren等系統,均無法達到毋須人為介入行駛的情境,即便其於官網上有另行標註目前該等系統功能有限,仍須駕駛人主動監控所有行駛環境等,但因該等內容說明不夠透明與清晰,而仍無法排除其等資訊具有誤導性,故特斯拉使用Autopilot等詞以及其他暗示車輛技術上能完全自主(vollkommen autonom)等用語,將引起消費者錯誤認知其可在德國的道路上運行完全自主之自動駕駛系統(註:此部分似係指SAE標準等級5之自動駕駛系統,然德國道路交通法目前僅開放運行等級4以下之自駕系統)。不過該判決結果仍可上訴。

美國聯邦通訊管理委員會對LPTV的新管制措施

  為了確保農村地區低功率電視(LPTV)播送的服務,與協助該等地區傳輸數位訊號,美國聯邦通訊委員會(FCC)決議從2009年8月25日起,不再接受新的類比傳輸運用與設備建置之申請,只允許新的數位低功率電視(new digital-only LPTV)及其有關之電視訊號轉換站的設置申請。此申請機會將限於特定區域,以及採行「先申請先服務」(first-come, first-served)的處理程序。此外,針對全國性的核發執照申請,則於2010年1月25日開始受理。   低功率電視起源於1982年,係FCC為了地方導向、實踐表意自由權利與促進文化多樣性,而在小型社區允許低功率電視執照擁有者得享有「次級性頻譜使用權」(secondary spectrum priority),於VHF(2-13)或UHF(14-51)頻段中,提供電視節目播送之服務。   根據2005年聯邦赤字削減法(Federal Deficit Reduction Act of 2005)規定,美國已於2009年6月12日全面停播類比訊號節目,改以數位訊號播送,但該法並未規範低功率電視台播送訊號的數位化時程,故有關既有低功率電視相關之管制亦須一併修訂,方能達到全數位化的視聽環境目標。

5G汽車協會發布《道路使用者保護白皮書》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年8月24日發布「弱勢道路使用者保護白皮書」(Vulnerable Road User Protection),點出目前道路交通安全對相關道路使用者保護不足,同時揭示未來車聯網(V2X)可提供整體用路人更安全之道路交通環境。   白皮書指出,道路安全是交通政策關鍵,應透過科技技術與政策制定,共同實現道路安全目標。而根據目前統計數據,弱勢道路使用者(Vulnerable Road User,以下簡稱VRU),包含:「行人」、「騎自行車者」、「騎電動車者」、「道路施工者」、「輪椅使用者」及「滑板或是單輪車使用者」,其占交通事故之傷亡比例最高,幾乎超過半數之死亡人數均為VRU,未來更可能因環境或與健康因素,使道路交通使用者數量不斷提升,對VRU之保護將成為未來各國交通之關鍵。   技術層面,則是車輛感測器偵測VRU、路側設備(Roadside Unit, RSU)、行動邊緣計算技術(Mobile Edge Computing, MEC)等,並進一步應用於車聯網下之不同案例情況:(1)高度風險區域:例如車輛進入行人密度極高的地區,透過感測器發出警訊,以即時警惕人車彼此存在,降低視線死角之事故發生率。(2)VRU與車輛透過裝置溝通:如車輛與VRU之間透過手機等設備傳輸相關資料並通訊。(3)車輛透過安全演算系統與VRU及各項設施交換訊息:此項涉及車聯網通訊應用下,車與車(V2V)和車與交通基礎設施(V2I)通訊,透過C-V2X PC5通訊技術軟體,使車輛、基礎設施與VRU之隨身電子設備之間得以進行通訊,降低事故碰撞發生。   綜上,未來應建立國際通用的車聯網之弱勢道路使用者保護標準,而非因區域而不同之標準,如目前美國汽車工程師協會之個人安全訊息標準(Personal Safety Messages, SAE PSM)及歐盟電信標準協會之弱勢道路使用者分布(Vulnerable Analysis Mapping , ETSI VAM),兩者在保護上即有所差異。VRU之保護服務是未來車聯網應用之關鍵與道路交通安全核心目標之一,相關系統與感測技術亦在不斷提升,未來更能融合感測器技術,並預測行人可能路徑,將全面提升道路安全。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP