Switzerland is a landlocked country situated in Central Europe, spanning an area of 41,000 km2, where the Alps occupy 60% of the territory, while it owns little cultivated land and poor natural resources. In 2011, its population was about 7,950,000 persons[1]. Since the Swiss Federal was founded, it has been adhering to a diplomatic policy claiming neutrality and peace, and therefore, it is one of the safest and most stable countries in the world. Switzerland is famous for its high-quality education and high-level technological development and is very competitive in biomedicine, chemical engineering, electronics and metal industries in the international market. As a small country with poor resources, the Swiss have learnt to drive their economic and social development through education, R&D and innovation a very long time ago. Some renowned enterprises, including Nestle, Novartis and Roche, are all based in Switzerland. Meanwhile, a lot of creative small-sized and medium-sized enterprises based in Switzerland are dedicated to supporting the export-orientation economy in Switzerland.
Switzerland has the strongest economic strength and plentiful innovation energy. Its patent applications, publication of essay, frequencies of quotation and private enterprises’ innovation performance are remarkable all over the world. According to the Global Competitiveness Report released by the World Economic Forum (WEF), Switzerland has ranked first among the most competitive countries in the world for four years consecutively since 2009[2]. Meanwhile, according to the Global Innovation Index (GII) released by INSEAD and the World Intellectual Property Organization (WIPO) jointly, Switzerland has also ranked first in 2011 and 2012 consecutively[3]. Obviously, Switzerland has led the other countries in the world in innovation development and economic strength. Therefore, when studying the R&D incentives and boosting the industrial innovation, we might benefit from the experience of Switzerland to help boost the relevant mechanism in Taiwan.
Taiwan’s government organization reform has been launched officially and boosted step by step since 2012. In the future, the National Science Council will be reformed into the “Ministry of Science and Technology”, and the Ministry of Economic Affairs into the “Ministry of Economy and Energy”, and the Department of Industrial Development into the “Department of Industry and Technology”. Therefore, Taiwan’s technology administrative system will be changed materially. Under the new government organizational framework, how Taiwan’s technology R&D and industrial innovation system divide work and coordinate operations to boost the continuous economic growth in Taiwan will be the first priority without doubt. Support of innovation policies is critical to promotion of continuous economic growth. The Swiss Government supports technological research and innovation via various organizations and institutions effectively. In recent years, it has achieved outstanding performance in economy, education and innovation. Therefore, we herein study the functions and orientation of the competent authorities dedicated to boosting research and innovation in Switzerland, and observe its policies and legal system applied to boost the national R&D in order to provide the reference for the functions and orientation of the competent authorities dedicated to boosting R&D and industrial innovation in Taiwan.
Swiss national administrative organization is subject to the council system. The Swiss Federal Council is the national supreme administrative authority, consisting of 7 members elected from the Federal Assembly and dedicated to governing a Federal Government department respectively. Switzerland is a federal country consisting of various cantons that have their own constitutions, councils and governments, respectively, entitled to a high degree of independence.
Article 64 of the Swiss Federal Constitution[4] requires that the federal government support research and innovation. The “Research and Innovation Promotion Act” (RIPA)[5] is dedicated to fulfilling the requirements provided in Article 64 of the Constitution. Article 1 of the RIPA[6] expressly states that the Act is enacted for the following three purposes: 1. Promoting the scientific research and science-based innovation and supporting evaluation, promotion and utilization of research results; 2. Overseeing the cooperation between research institutions, and intervening when necessary; 3. Ensuring that the government funding in research and innovation is utilized effectively. Article 4 of the RIPA provides that the Act shall apply to the research institutions dedicated to innovation R&D and higher education institutions which accept the government funding, and may serve to be the merit for establishment of various institutions dedicated to boosting scientific research, e.g., the National Science Foundation and Commission of Technology & Innovation (CTI). Meanwhile, the Act also provides detailed requirements about the method, mode and restriction of the government funding.
According to the RIPA amended in 2011, the Swiss Federal Government’s responsibility for promoting innovation policies has been extended from “promotion of technology R&D” to “unification of education, research and innovation management”, making the Swiss national industrial innovation framework more well-founded and consistent[8] . Therefore, upon the government organization reform of Switzerland in 2013, most of the competent authorities dedicated to technology in Swiss have been consolidated into the Federal Department of Economic Affairs, Education and Research.
Under the framework, the Swiss Federal Government assigned higher education, job training, basic scientific research and innovation to the State Secretariat for Education, Research and Innovation (SERI), while the Commission of Technology & Innovation (CTI) was responsible for boosting the R&D of application scientific technology and industrial technology and cooperation between the industries and academy. The two authorities are directly subordinate to the Federal Department of Economic Affairs, Education and Research (EAER). The Swiss Science and Technology Council (SSTC), subordinate to the SERI is an advisory entity dedicated to Swiss technology policies and responsible for providing the Swiss Federal Government and canton governments with the advice and suggestion on scientific, education and technology innovation policies. The Swiss National Science Foundation (SNSF) is an entity dedicated to boosting the basic scientific R&D, known as the two major funding entities together with CTI for Swiss technology R&D. The organizations, duties, functions and operations of certain important entities in the Swiss innovation system are introduced as following.
Date source: Swiss Federal Department of Economic Affairs, Education and Research official website
Fig. 1 Swiss Innovation Framework Dedicated to Boosting Industries-Swiss Federal Economic, Education and Research Organizational Chart
1. State Secretariat of Education, Research and Innovation (SERI)
SERI is subordinate to the Department of Economic Affairs, Education and Research, and is a department of the Swiss Federal Government dedicated to managing research and innovation. Upon enforcement of the new governmental organization act as of January 1, 2013, SERI was established after the merger of the State Secretariat for Education and Research, initially subordinate to Ministry of Interior, and the Federal Office for Professional Education and Technology (OEPT), initially subordinated to Ministry of Economic Affairs. For the time being, it governs the education, research and innovation (ERI). The transformation not only integrated the management of Swiss innovation system but also unified the orientations toward which the research and innovation policy should be boosted.
SERI’s core missions include “enactment of national technology policies”, “coordination of research activities conducted by higher education institutions, ETH, and other entities of the Federal Government in charge of various areas as energy, environment, traffic and health, and integration of research activities conducted by various government entities and allocation of education, research and innovation resources. Its functions also extend to funding the Swiss National Science Foundation (SNSF) to enable SNSF to subsidize the basic scientific research. Meanwhile, the international cooperation projects for promotion of or participation in research & innovation activities are also handled by SERI to ensure that Switzerland maintains its innovation strength in Europe and the world.
The Swiss Science and Technology Council (SSTC) is subordinate to SERI, and also the advisory unit dedicated to Swiss technology policies, according to Article 5a of RIPA[9]. The SSTC is responsible for providing the Swiss Federal Government and canton governments with advice and suggestion about science, education and innovation policies. It consists of the members elected from the Swiss Federal Council, and a chairman is elected among the members.
2. Swiss National Science Foundation (SNSF)
The Swiss National Science Foundation (SNSF) is one of the most important institutions dedicated to funding research, responsible for promoting the academic research related to basic science. It supports about 8,500 scientists each year. Its core missions cover funding as incentives for basic scientific research. It grants more than CHF70 million each year. Nevertheless, the application science R&D, in principle, does not fall in the scope of funding by the SNSF. The Foundation allocates the public research fund under the competitive funding system and thereby maintains its irreplaceable identity, contributing to continuous output of high quality in Switzerland.
With the support from the Swiss Federal Government, the SNSF was established in 1952. In order to ensure independence of research, it was planned as a private institution when it was established[10]. Though the funding is provided by SERI, the SNSF still has a high degree of independence when performing its functions. The R&D funding granted by the SNSF may be categorized into the funding to free basic research, specific theme-oriented research, and international cooperative technology R&D, and the free basic research is granted the largest funding. The SNSF consists of Foundation Council, National Research Council and Research Commission[11].
Data source: prepared by the Study
Fig. 2 Swiss National Science Foundation Organizational Chart(1) Foundation Council
The Foundation Council is the supreme body of the SNSF[12], which is primarily responsible for making important decisions, deciding the role to be played by the SNSF in the Swiss research system, and ensuring SNSF’s compliance with the purpose for which it was founded. The Foundation Council consists of the members elected from the representatives from important research institutions, universities and industries in Swiss, as well as the government representatives nominated by the Swiss Federal Council. According to the articles of association of the SNSF[13], each member’s term of office should be 4 years, and the members shall be no more than 50 persons. The Foundation Council also governs the Executive Committee of the Foundation Council consisting of 15 Foundation members. The Committee carries out the mission including selection of National Research Council members and review of the Foundation budget.
(2) National Research Council
The National Research Council is responsible for reviewing the applications for funding and deciding whether the funding should be granted. It consists of no more than 100 members, mostly researchers in universities and categorized, in four groups by major[14], namely, 1. Humanities and Social Sciences; 2. Math, Natural Science and Engineering; 3. Biology and Medical Science; and 4. National Research Programs (NRPs)and National Centers of Competence in Research (NCCRs). The NRPs and NCCRs are both limited to specific theme-oriented research plans. The funding will continue for 4~5years, amounting to CHF5 million~CHF20 million[15]. The specific theme-oriented research is applicable to non-academic entities, aiming at knowledge and technology transfer, and promotion and application of research results. The four groups evaluate and review the applications and authorize the funding amount.
Meanwhile, the representative members from each group form the Presiding Board dedicated to supervising and coordinating the operations of the National Research Council, and advising the Foundation Council about scientific policies, reviewing defined funding policies, funding model and funding plan, and allocating funding by major.
(3) Research Commissions
Research Commissions are established in various higher education research institutions. They serve as the contact bridge between higher education academic institutions and the SNSF. The research commission of a university is responsible for evaluating the application submitted by any researcher in the university in terms of the school conditions, e.g., the school’s basic research facilities and human resource policies, and providing advice in the process of application. Meanwhile, in order to encourage young scholars to attend research activities, the research committee may grant scholarships to PhD students and post-doctor research[16].
~to be continued~
[2] WORLD ECONOMIC FORUM [WEF], The Global Competiveness Report 2012-2013 (2012), http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2012-13.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2011-2012 (2011), http://www3.weforum.org/docs/WEF_GCR_Report_2011-12.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2010-2011 (2010), http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2010-11.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2009-2010 (2009),. http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2009-10.pdf (last visited Jun. 1, 2013).
[3] INSEAD, The Global Innovation Index 2012 Report (2012), http://www.globalinnovationindex.org/gii/GII%202012%20Report.pdf (last visited Jun. 1, 2013); INSEAD, The Global Innovation Index 2011 Report (2011), http://www.wipo.int/freepublications/en/economics/gii/gii_2011.pdf (last visited Jun. 1, 2013).
[4] SR 101 Art. 64: “Der Bund fördert die wissenschaftliche Forschung und die Innovation.”
[5] Forschungs- und Innovationsförderungsgesetz, vom 7. Oktober 1983 (Stand am 1. Januar 2013). For the full text, please see www.admin.ch/ch/d/sr/4/420.1.de.pdf (last visited Jun. 3, 2013).
[6] Id.
[7] Id.
[8] CTI, CTI Multi-year Program 2013-2016 7(2012), available at http://www.kti.admin.ch/?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDeYR,hGym162epYbg2c_JjKbNoKSn6A-- (last visited Jun. 3, 2013).
[9] Supra note 5.
[10] Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/default.aspx (last visited Jun. 3, 2013).
[11] Id.
[12] Foundation Council, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/foundationcouncil.aspx (last visited Jun. 3, 2013).
[13] See Statutes of Swiss National Science Foundation Art.8 & Art. 9, available at http://www.snf.ch/SiteCollectionDocuments/statuten_08_e.pdf (last visited Jun. 3, 2013).
[14] National Research Council, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/researchcouncil/Pages/default.aspx (last visted Jun.3, 2013).
[15] Theres Paulsen, VISION RD4SD Country Case Study Switzerland (2011), http://www.visionrd4sd.eu/documents/doc_download/109-case-study-switzerland (last visited Jun.6, 2013).
[16] Research Commissions, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/researchcommissions.aspx (last visted Jun. 6, 2013).
With the coming of the Innovation-based economy era, technology research has become the tool of advancing competitive competence for enterprises and academic institutions. Each country not only has begun to develop and strengthen their competitiveness of industrial technology but also has started to establish related mechanism for important technology areas selected or legal analysis. By doing so, they hope to promote collaboration of university-industry research, completely bring out the economic benefits of the R & D. and select the right technology topics. To improve the depth of research cooperation and collect strategic advice, we have to use legislation system, but also social communication mechanism to explore the values and practical recommendations that need to be concerned in policy-making. This article in our research begins with establishing a mechanism for collecting diverse views on the subject, and shaping more efficient dialogue space. Finally, through the process of practicing, this study effectively collects important suggestions of practical experts.
Draft of AI Product and System Evaluation Guidelines Released by the Administration for Digital Industries to Enhance AI GovernanceDraft of AI Product and System Evaluation Guidelines Released by the Administration for Digital Industries to Enhance AI Governance 2024/08/15 I. AI Taiwan Action Plan 2.0 In 2018, the Executive Yuan launched the “AI Taiwan Action Plan” to ensure that the country keeps pace with AI developments. This strategic initiative focuses on attracting top talent, advancing research and development, and integrating AI into critical sectors such as smart manufacturing and healthcare. The action plan has sparked growing discussion on AI regulation. Through these efforts, Taiwan aims to position itself as a frontrunner in the global smart technology landscape. Later in 2023, the Executive Yuan updated the action plan, releasing “AI Taiwan Action Plan 2.0” to further strengthen AI development. “AI Taiwan Action Plan 2.0” outlines five main pillars: 1. Talent Development: Enhancing the quality and quantity of AI expertise, while improving public AI literacy through targeted education and training initiatives. 2. Technological and Industrial Advancement: Focusing on critical AI technologies and applications to foster industrial growth; and creating the Trustworthy AI Dialogue Engine (TAIDE) that communicates in Traditional Chinese. 3. Enhancing work environments: Establishing robust AI governance infrastructure to facilitate industry and governmental regulation, and to foster compliance with international standards. 4. International Collaboration: Expanding Taiwan's role in international AI forums, such as the Global Partnership on AI, to collaborate on developing trustworthy AI practices. 5. Societal and Humanitarian Engagement: Utilizing AI to tackle pressing societal challenges such as labor shortages, an aging population, and environmental sustainability. II. AI Product and System Evaluation Guidelines: A Risk-based Approach to AI Governance To support infrastructure, in March 2024, the Administration for Digital Industries issued the draft AI Product and System Evaluation Guidelines. The Guidelines are intended to serve as a reference for industry when developing and using AI products and systems, thus laying a crucial foundation for advancing AI-related policies in Taiwan. The Guidelines outline several potential risks associated with AI: 1. Third-Party Software and Hardware: While third-party software, hardware, and datasets can accelerate development, they may also introduce risks into AI products and systems. Therefore, effective risk management policies are crucial. 2. System Transparency: The lack of transparency in AI products and systems makes risk assessment relatively challenging. Inadequate transparency in AI models and datasets also pose risks for development and deployment. 3. Differences in Risk Perception: Developers of AI products and systems may overlook risks specific to different application scenarios. Moreover, risks may gradually emerge as the product or system is used and trained over time. 4. Application Domain Risks: Variations between testing results and actual operational performance can lead to differing risk assessments for evaluated products and systems. 5. Deviation from Human Behavioral Norms: If AI products and systems behave unexpectedly compared to human operations, this can indicate a drift in the product, system, or model, thereby introducing risks. The Guidelines also specify that businesses have to categorize risks when developing or using AI products and systems, and manage them in accordance with these classifications. In alignment with the EU AI Act, risks are classified into four levels: unacceptable, high, limited, and minimal. 1. Unacceptable Risk: If AI systems used by public or private entities provide social scoring of individuals, this could lead to discriminatory outcomes and the exclusion of certain groups. Furthermore, if AI systems are employed to manipulate the cognitive behavior of individuals or vulnerable populations, causing physical or psychological harm, such systems are deemed unacceptable and prohibited. 2. High risk: AI systems are classified as high-risk in several situations. These include applications used in critical infrastructure, such as transportation, where there is potential risk to citizens' safety and health. These situations also encompass AI systems involved in educational or vocational training (such as exam scoring), which can determine access to education or professional paths. AI used as safety-critical product components, such as robot-assisted surgery, also falls into this category. In the employment sector, AI systems used for managing recruitment processes, including CV-sorting software, are considered high-risk. Essential private and public services, such as credit scoring systems that impact loan eligibility, also fall under high-risk. AI used in law enforcement in ways that it may affect fundamental rights, such as evaluating the reliability of evidence, is also included. AI systems involved in migration, asylum, and border control, such as automated visa application examinations, are categorized as high-risk. Finally, AI solutions used in the administration of justice and democratic processes, such as court ruling searches, are also classified as high-risk. If an AI system is classified as high risk, it must be evaluated across ten criteria—Safety, Explainability, Resilience, Fairness, Accuracy, Transparency, Accountability, Reliability, Privacy, and Security—to ensure the AI system’s quality. 3. Limited risk: When an AI product or system is classified as having limited risk, it is up to the enterprise to determine whether an evaluation is required. The Guidelines also introduce specific transparency obligations to ensure that humans are informed when necessary, thus fostering trust. For instance, when using AI systems such as chatbots or systems for generating deepfake content, humans must be made aware that they are interacting with a machine so they can take an informed decision to continue or step back. 4. Minimal or no risk: The Guidelines allow the free use of minimal-risk AI. This includes applications such as AI-enabled video games and spam filters. Ⅲ. Conclusion The AI Product and System Evaluation Guidelines represent a significant step forward in establishing a robust, risk-based framework for AI governance in Taiwan. By aligning with international standards like the EU AI Act, these Guidelines ensure that AI products and systems are rigorously assessed and categorized into four distinct risk levels: unacceptable, high, limited, and minimal. This structured approach allows businesses to manage AI-related risks more effectively, ensuring that systems are safe, transparent, and accountable. The emphasis on evaluating AI systems across ten critical criteria—including safety, explainability, and fairness—reflects a comprehensive strategy to mitigate potential risks. This proactive approach not only safeguards the public but also fosters trust in AI technologies. By setting clear expectations and responsibilities for businesses, the Guidelines promote responsible development and deployment of AI, ultimately contributing to Taiwan's goal of becoming a leader in the global AI landscape.
Research on Policies for building a digital nation in Recent Years (2016-2017)Research on Policies for building a digital nation in Recent Years (2016-2017) Recent years, the government has already made some proactive actions, including some policies and initiatives, to enable development in the digital economy and fulfill the vision of Digital Nation. Those actions are as follows: 1. CREATING THE “FOOD CLOUD” FOR FOOD SAFETY CONTROLS Government agencies have joined forces to create an integrated “food cloud” application that quickly alerts authorities to food safety risks and allows for faster tracing of products and ingredients. The effort to create the cloud was spearheaded by the Executive Yuan’s Office of Food Safety under the leadership of Vice Premier Chang San-cheng on January 12, 2016. The “food cloud” application links five core systems (registration, tracing, reporting, testing, and inspection) from the Ministry of Health and Welfare (MOHW) with eight systems from the Ministry of Finance, Ministry of Economic Affairs, Ministry of Education (MOE), Council of Agriculture and Environmental Protection Administration. The application gathers shares and analyzes information in a methodical and systematic manner by employing big data technology. To ensure the data can flow properly across different agencies, the Office of Food Safety came up with several products not intended for human consumption and had the MOHW simulate the flow of those products under import, sale and supply chain distribution scenarios. The interministerial interface successfully analyzed the data and generated lists of food risks to help investigators focus on suspicious companies. Based on these simulation results, the MOHW on September 2, 2015, established a food and drug intelligence center as a mechanism for managing food safety risks and crises on the national level. The technologies for big data management and mega data analysis will enable authorities to better manage food sources and protect consumer health. In addition, food cloud systems established by individual government agencies are producing early results. The MOE, for instance, rolled out a school food ingredient registration platform in 2014, and by 2015 had implemented the system across 22 countries and cities at 6,000 schools supplying lunches for 4.5 million students. This platform, which made school lunch ingredients completely transparent, received the 2015 eAsia Award as international recognition for the use of information technology in ensuring food safety. 2. REVISING DIGITAL CONVERGENCE ACTS On 2016 May 5th, the Executive Yuan Council approved the National Communications Commission's (NCC) proposals, drafts of “Broadcasting Terrestrial and Channel Service Suppliers Administration Act”, “Multichannel Cable Platform Service Administration Act”, “Telecommunications Service Suppliers Act”, “Telecommunications Infrastructure and Resources Administration Act”, “Electronic Communications Act”, also the five digital convergence laws. They will be sent to the Legislature for deliberation. But in the end, this version of five digital convergence bills did not pass by the Legislature. However, later on, November 16, 2017, The Executive Yuan approved the new drafts of “Digital Communication Act” and the “Telecommunication Service Management Act”. The “Digital Communication Act” and the “Telecommunication Service Management Act” focused summaries as follows: 1. The digital communication bill A. Public consultation and participation. B. The digital communication service provider ought to use internet resource reasonability and reveal network traffic control measures. C. The digital communication service provider ought to reveal business information and Terms of Service. D. The responsibility of the digital communication service provider. 2. The telecommunication service management bill A. The telecommunication service management bill change to use registration system. B. The general obligation of telecommunications to provide telecommunication service and the special obligation of Specific telecommunications. C. Investment, giving, receiving and merging rules of the telecommunication service. Telecommunications are optimism of relaxing rules and regulations, and wish it would infuse new life and energy into the market. Premier Lai instructed the National Communications Commission and other agencies to elucidate the contents of the two communication bills to all sectors of society, and communicate closely with lawmakers of all parties to build support for a quick passage of the bills. 3. FOCUSING ON ICT SECURITY TO BUILD DIGITAL COUNTRIES The development of ICT has brought convenience to life but often accompanied by the threat of illegal use, especially the crimes with the use of new technologies such as Internet techniques and has gradually become social security worries. Minor impacts may cause inconvenience to life while major impacts may lead to a breakdown of government functions and effects on national security. To enhance the capability of national security protection and to avoid the gap of national security, the Executive Yuan on August 1st 2016 has upgraded the Office of Information and Communication Security into the Agency of Information and Communication Security, a strategic center of R.O.C security work, integrating the mechanism of the whole government governance of information security, through specific responsibility, professionalism, designated persons and permanent organization to establish the security system, together with the relevant provisions of the law so that the country's information and communication security protection mechanism will become more complete. The efforts to the direction could be divided into three parts: First, strengthening the cooperation of government and private sectors of information security: In a sound basis of legal system, the government plans to strengthen the government and some private sectors’ information security protection abilities ,continue to study and modify the relevant amendments to the relevant provisions, strengthen public-private collaborative mechanism, deepen the training of human resources and enhance the protection of key information infrastructure of our country. Second, improving the information and communication security professional capability: information and communication security business is divided into policy and technical aspects. While the government takes the responsibility for policy planning and coordination, the technical service lies in an outsourcing way. Based on a sound legal system, the government will establish institutionalized and long-term operation modes and plan appropriate organizational structures through the discussion of experts and scholars from all walks of life. Third, formulating Information and Communication Safety Management Act and planning of the Fifth National Development Program for Information and Communication Security: The government is now actively promoting the Information and Communication Safety Management Act as the cornerstone for the development of the national digital security and information security industry. The main content of the Act provides that the applicable authorities should set up security protection plan at the core of risk management and the procedures of notification and contingency measures, and accept the relevant administrative check. Besides the vision of the Fifth National Development Program for Information and Communication Security which the government is planning now is to build a safe and reliable digital economy and establish a safe information and communication environment by completing the legal system of information and communication security environment, constructing joint defense system of the national Information and Communication security, pushing up the self-energy of the industries of information security and nurture high-quality human resources for elite talents for information security. 4. THE DIGITAL NATION AND INNOVATIVE ECONOMIC DEVELOPMENT PLAN The Digital Nation and Innovative Economic Development Plan (2017-2025) known as “DIGI+” plan, approved by the Executive Yuan on November 24, 2016. The plan wants to grow nation’s digital economy to NT $ 6.5 trillion (US$205.9 billion), improve the digital lifestyle services penetration rate to 80 %, increase broadband connections to 2 Gbps, ensure citizens’ basic rights to have 25 Mbps broadband access, and put our nation among the top 10 information technology nations worldwide by 2025. The plan contains several important development strategies: DIGI+ Infrastructure: Build infrastructure conducive to digital innovation. DIGI+ Talent: Cultivate digital innovation talent. DIGI+ Industry: Support cross-industry transformation through digital innovation. DIGI+ Rights: Make R.O.C. an advanced society that respects digital rights and supports open online communities. DIGI+ Cities: Build smart cities through cooperation among central and local governments and the industrial, academic and research sectors. DIGI+ Globalization: Boost nation’s standing in the global digital service economy. The plan also highlights few efforts: First is to enrich “soft” factors and workforce to create an innovative environment for digital development. To construct this environment, the government will construct an innovation-friendly legal framework, cultivate interdisciplinary digital talent, strengthen research and develop advanced digital technologies. Second is to enhance digital economy development. The government will incentivize innovative applications and optimize the environment for digital commerce. Third, the government will develop an open application programming interface for government data and create demand-oriented, one-stop smart government cloud services. Fourth, the government will ensure broadband access for the disadvantaged and citizens of the rural area, implement the participatory process, enhance different kinds of international cooperation, and construct a comprehensive humanitarian legal framework with digital development. Five is to build a sustainable smart country. The government will use smart network technology to build a better living environment, promote smart urban and rural area connective governance and construction and use on-site research and industries innovation ecosystem to assist local government plan and promote construction of the smart country. In order to achieve the overall effectiveness of the DIGI + program, interdisciplinary, inter-ministerial, inter-departmental and inter-departmental efforts will be required to collaborate with the newly launched Digital National Innovation Economy (DIGI +) Promotion Team. 5. ARTIFICIAL INTELLIGENCE SCIENTIFIC RESEARCH STRATEGY The Ministry of Science and Technology (MOST) reported strategy plan for artificial intelligence (AI) scientific research at Cabinet meeting on August 24, 2017. Artificial intelligence is a powerful and inevitable trend, and it will be critical to R.O.C.’s competitiveness for the next 30 years. The ministry will devote NT$16 billion over the next five years to building an AI innovation ecosystem in R.O.C. According to MOST, the plan will promote five strategies: 1. Creating an AI platform to provide R&D services MOST will devote NT$5 billion over the next four years to build a platform, integrating the resources, providing a shared high-speed computing environment and nurturing emerging AI industries and applications. 2. Establishing an AI innovative research center MOST will four artificial intelligence innovation research centers across R.O.C. as part of government efforts to enhance the nation’s competitiveness in AI technology. The centers will support the development of new AI in the realms of financial technology, smart manufacturing, smart healthcare and intelligent transportation systems. 3. Setting up AI robot maker spaces An NT$2 billion, four-year project assisting industry to develop the hardware-software integration of robots and innovative applications was announced by the Ministry of Science and Technology. 4. Subsidizing a semiconductor “moonshot” program to explore ambitious and groundbreaking smart technologies This program will invest NT$4 billion from 2018 through 2021 into developing semiconductors and chip systems for edge devices as well as integrating the academic sector’s R&D capabilities and resources. the project encompasses cognitive computing and AI processor chips; next-generation memory designs; process technologies and materials for key components of sensing devices; unmanned vehicles, AR and VR; IoT systems and security. 5. Organizing Formosa Grand Challenge competitions The program is held in competitions to engage young people in the development of AI applications. The government hopes to extend R.O.C.’s industrial advantages and bolster the country’s international competitiveness, giving R.O.C. the confidence to usher in the era of AI applications. All of these efforts will weave people, technologies, facilities, and businesses into a broader AI innovation ecosystem. 6. INTELLIGENT TRANSPORTATION SYSTEM PLANS Ministry of Transportation and Communications (MOTC) launched plans to develop intelligent transportation systems at March 7th in 2017. MOTC integrates transportation and information and communications technology through these plans to improve the convenience and reduce the congestion of the transportation. These plans combine traffic management systems for highways, freeways and urban roads, a multi-lane free-flow electronic toll collection system, bus information system that provides timely integrated traffic information services, and public transportation fare card readers to reduce transport accidence losses, inconvenience of rural area, congestion of main traffic arteries and improve accessibility of public transportation. There are six plans are included: 1. Intelligent transportation safety plan; 2. Relieve congestion on major traffic arteries; 3. Make transportation more convenient in Eastern Taiwan and remote areas; 4. Integrate and share transportation resources; 5. Develop “internet-of-vehicles” technology applications; and 6. Fundamental R&D for smart transportation technology. These plans promote research and development of smart vehicles and safety intersections, develop timely bus and traffic information tracking system, build a safe system of shared, safe and green-energy smart system, and subsidize the large vehicles to install the vision enhancement cameras to improve the safety of transportation. These plans also use eTag readers, vehicle sensors and info communication technologies to gather the traffic information and provide timely traffic guidance, reduce the congestion of the traffic flow. These plans try to use demand-responsive transit system with some measures such as combine public transportation and taxi, to improve the flexibility of the public traffic service and help the basic transportation needs of residents in eastern Taiwan and rural areas to be fulfilled. A mobile transport service interface and a platform that integrating booking and payment processes are also expected to be established to provide door-to-door transportation services and to integrate transportation resources. And develop demonstration projects of speed coordination of passenger coach fleets, vehicle-road interaction technology, and self-driving car to investigate and verify the issues in technological, operational, industrial, legal environments of internet-of-vehicles applications in our country. Last but not least, research and development on signal control systems that can be used in both two and four-wheeled vehicles, and deploy an internet-of-vehicles prototype platform and develop drones traffic applications. These plans are expected to reduce 25% traffic congestion, 20% of motor vehicle incidence, leverage 10% using rate of public transportation, raise 20% public transportation service accessibility of rural area and create NT$30 billion production value. After accomplishing these targets, the government can establish a comprehensive transportation system and guide industry development of relating technology areas. Through the aforementioned initiatives, programs, and plans, the government wants to construct the robust legal framework and policy environment for digital innovation development, and facilitate the quality of citizens in our society.
Executive Yuan Yuan Promoted “Productivity 4.0” to Boost Global CompetitivenessExecutive Yuan Yuan Promoted “Productivity 4.0” to Boost Global Competitiveness 1.Executive Yuan held the “Productivity 4.0: Strategy Review Board Meeting” to boost industrial transformation The Executive Yuan held the “Productivity 4.0: Strategy Review Board Meeting” on June 4-5th , 2015. The GDP per capita of manufacturing and service industries, including machinery, metal processing, transportation vehicles, 3C, food, textile, logistics, health care, and agriculture, are expected to be over 10 million NT dollars by 2024. This meeting focuses on three topics: Productivity 4.0 industry and technology development strategy, advanced development strategy on advanced manufacturing and innovation application, and strategy on engineering smart tech talents cultivation and Industry-academic Cooperation. The three main themes to be used to put the advanced manufacturing into force are smart automation and robots, sensing and control technologies from Internet of Things (IoT), and technologies used in analyzing the big data. As a result, the digitalization of small- and medium-sized business and smart operation of big business are as the cornerstones to build service-oriented systems and develop advanced manufacturing in R.O.C.. Facing challenges of labor shortages and aging labor forces, the Executive Yuan is planning to implement “Productivity 4.0” to stimulate the process of industry transformation of value-added innovation and provide new products and services in global market. In implementing the above-mentioned policy goals, the Executive Yuan is planning three directions to be followed. First, global competitiveness is depended upon key technologies. As OEMs, manufacturing industry in R.O.C. is unable to provide products of self-owned brand and is vulnerable while facing challenges from other transnational companies. Second, the Premier, Dr. Mao Chi-kuo, made reference of the bicycle industry’s successful development model as an example for the Productivity 4.0 “A-Team” model. Through combining technologies and organizations, the aim is to build competitive supply chains across all the small- and medium-sized business. Finally, the new skills training and the cultivation of talents are more urgent than ever before. While technical and vocational schools, universities and postgraduate studies are needed to be equipped with sufficient fundamental knowledge, those already in the job market have to learn the skills and knowledge necessary for industrial transformation so that they could contribute their capabilities and wisdom for Ourfuture. 2.Executive Yuan Approved “Productivity 4.0 Initiative” to Promote Industry Innovation and Transformation The Executive Yuan has approved the Productivity 4.0 Initiative on September 17, 2015. Before its approval, the Office of Science and Technology (OST) gave a presentation on the Draft of the Productivity 4.0 Initiative on July 23, 2015 detailing the underlying motives behind the program. Confronted with the challenges our traditional industries and OEMs meet, including labor shortages (the national laboring population ranging from age 15 to 65 has seen a substantial decrease of 0.18 to 0.2 million annually) and a aging labor force, the the Productivity 4.0 Initiative sets the directions for industrial development tackling these issues through six main strategies: enhancing and fine-tuning flagship industries’ smart-supply-chain ecosystems, encouraging the establishing of startups, localizing production and services, securing autonomy in key technologies, cultivating practical and technical talents and injection of industrial policy tools. After hearing the presentation on the Initiative, the Premier, Mao Chi-kuo, made reference to the core ideas of the Productivity 4.0 Initiative in his concluding remarks. “The core concept of the Productivity 4.0 Initiative is to propel R.O.C. to a pivotal position in the global manufacturing supply chain by capitalizing on the nation’s core strength in industrial technology, while fostering an outstanding work environment stimulating synergy between employees and automotive systems in order to cope with R.O.C.’s imminent labor shortage,” Mao said Also focusing on the Productivity 4.0 Initiative, the Premier gave a keynote speech titled ‘Views on the current economic and social issues’ at the Third Wednesday Club. He takes the view that the GDP downslide is of a structural nature and the government is going to guide the economy towards an upward path by assisting industries to innovate and transform. In an effort to remove the three major obstacles to innovation and entrepreneurship— discouraging laws and regulations, difficulty in raising capital and gathering financing as well as lack of international partnerships, the government has been diligently promoting the Third Party Payment Act as well as setting-up R.O.C. Rapid Innovation Prototyping League for Enterprises. Among these measures, Industry 4.0 has been at the core of the Initiative, in which cyber-physical production system (CPS) would be introduced by integrating Cloud-computing and Internet of Things technology to spur industrial transformations, specifically industrial manufacturing, added-value services and agricultural production. The Productivity 4.0 Initiative is an imperative measure in dealing with R.O.C.’s imminent issues of labor shortage, and the aging society, its promising effects are waiting to unfold. 3.Executive Yuan’s Further Addendum to “Productivity 4.0 Plan”: Attainment of Core Technologies and the Cultivation of Domestic Technical Talents In an continual effort to put in place the most integrated infrastructural setting for the flourishing of its “Productivity 4.0 Plan”, Executive Yuan Premier Mao Chi-Kuo announced on the 22nd October that the overhaul infrastructural set-up will be focused on the development of core technologies and the cultivation of skilled technical labor. To this end, the Executive Yuan is gathering participation and resources from the Ministry of Economic Affairs (hereafter MOEA), Ministry of Education, Ministry of Science and Technology, Ministry of Labor, the Council of Agriculture, among other governmental bodies, collecting experiences and knowledge from academia and researchers, in order to improve the development of pivotal technologies, the training of skilled technical labor and consequently to improve and reform the present education system so as to meet the aforementioned goals. Premier Mao Chi-Kuo pointed out that Productivity 4.0 is a production concept in which the industry is evolved from mere automation- to intelligent-based manufacturing, shifting towards a “small-volume, large-variety” production paradigm, closing the gaps between production and consumption sides through direct communication, hence allowing industry to push itself further on changing its old efficiency-based production model to an innovation-driven one. Apart from the Research and Development efforts geared towards key technologies, Premier Mao stressed that the people element, involved in this transformative process, is what dictates Productivity 4.0 Plan’s success. The cross-over or multi-disciplinary capability of the labor force is especially significant. In order to bring up the necessary work force needed for Productivity 4.0, besides raising support for the needed Research and Development, an extensive effort should be placed in reforming and upgrading the current educational system, as well as the technical labor and internal corporate educational structure. Moreover, an efficient platform should be implemented so that opinions and experiences could be pooled out, thus fostering closer ties between industry, academia and research. The MOEA stated that the fundamental premise behind the Productivity 4.0 strategy is that by way of systematic, brand-orientated formation of technical support groups, constituted by members of industry, academia and research, will we able to develop key sensor, internet and core technologies for our manufacturing, business and agriculture sector. It is estimated that by the end of year 2016, the Executive Yuan will have completed 6 major Productivity 4.0 production lines; supported the development of technical personnel in smart manufacturing, smart business and smart agriculture, amounting to 2,500 persons; established 4 inter-university, inter-disciplinary strategic partnerships in order to prepare much needed labor force for the realization of the Productivity 4.0 Plan. It is estimated that by the year 2020, industry has already developed the key technologies through the Productivity 4.0 platform, aiding to decrease by 50% the time currently needed to for Research and Development, increasing the technological sovereignty by 50% and accrue production efficiency by 15% and above. Furthermore, through the educational reforms, the nation will be able to lay solid foundations for its future labor talents, as well as connecting them to the world at large, effectively making them fit to face the global markets and to upgrade their production model.