The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health

The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health

Li-Ting Tsai

  Scientific research improves the well-being of all mankind, the data sharing on medical and health promote the overall amount of energy in research field. For promoting the access of scientific data and research findings which was supported by the government, the U.S. government affirmed in principle that the development of science was related to the retention and accesses of data. The disclosure of information should comply with legal restrictions, and the limitation by time as well. For government-sponsored research, the data produced was based on the principle of free access, and government policies should also consider the actual situation of international cooperation[1]Furthermore, the access of scientific research data would help to promote scientific development, therefore while formulating a sharing policy, the government should also consider the situation of international cooperation, and discuss the strategy of data disclosure based on the principle of free access.

  In order to increase the effectiveness of scientific data, the U.S. National Institutes of Health (NIH) set up the Office of Science Policy (OSP) to formulate a policy which included a wide range of issues, such as biosafety (biosecurity), genetic testing, genomic data sharing, human subjects protections, the organization and management of the NIH, and the outputs and value of NIH-funded research. Through extensive analysis and reports, proposed emerging policy recommendations.[2] At the level of scientific data sharing, NIH focused on "genes and health" and "scientific data management". The progress of biomedical research depended on the access of scientific data; sharing scientific data was helpful to verify research results. Researchers integrated data to strengthen analysis, promoted the reuse of difficult-generated data, and accelerated research progress.[3] NIH promoted the use of scientific data through data management to verify and share research results.

  For assisting data sharing, NIH had issued a data management and sharing policy (DMS Policy), which aimed to promote the sharing of scientific data funded or conducted by NIH.[4] DMS Policy defines “scientific data.” as “The recorded factual material commonly accepted in the scientific community as of sufficient quality to validate and replicate research findings, regardless of whether the data are used to support scholarly publications. Scientific data do not include laboratory notebooks, preliminary analyses, completed case report forms, drafts of scientific papers, plans for future research, peer reviews, communications with colleagues, or physical objects, such as laboratory specimens.”[5] In other words, for determining scientific data, it is not only based on whether the data can support academic publications, but also based on whether the scientific data is a record of facts and whether the research results can be repeatedly verified.

  In addition, NIH, NIH research institutes, centers, and offices have had expected sharing of data, such as: scientific data sharing, related standards, database selection, time limitation, applicable and presented in the plan; if not applicable, the researcher should propose the data sharing and management methods in the plan. NIH also recommended that the management and sharing of data should implement the FAIR (Findable, Accessible, Interoperable and Reusable) principles. The types of data to be shared should first in general descriptions and estimates, the second was to list meta-data and other documents that would help to explain scientific data. NIH encouraged the sharing of scientific data as soon as possible, no later than the publication or implementation period.[6] It was said that even each research project was not suitable for the existing sharing strategy, when planning a proposal, the research team should still develop a suitable method for sharing and management, and follow the FAIR principles.

  The scientific research data which was provided by the research team would be stored in a database which was designated by the policy or funder. NIH proposed a list of recommended databases lists[7], and described the characteristics of ideal storage databases as “have unique and persistent identifiers, a long-term and sustainable data management plan, set up metadata, organizing data and quality assurance, free and easy access, broad and measured reuse, clear use guidance, security and integrity, confidentiality, common format, provenance and data retention policy”[8]. That is to say, the design of the database should be easy to search scientific data, and should maintain the security, integrity and confidentiality and so on of the data while accessing them.

  In the practical application of NIH shared data, in order to share genetic research data, NIH proposed a Genomic Data Sharing (GDS) Policy in 2014, including NIH funding guidelines and contracts; NIH’s GDS policy applied to all NIHs Funded research, the generated large-scale human or non-human genetic data would be used in subsequent research. [9] This can effectively promote genetic research forward.

  The GDS policy obliged researchers to provide genomic data; researchers who access genomic data should also abide by the terms that they used the Controlled-Access Data for research.[10] After NIH approved, researchers could use the NIH Controlled-Access Data for secondary research.[11] Reviewed by NIH Data Access Committee, while researchers accessed data must follow the terms which was using Controlled-Access Data for research reason.[12] The Genomic Summary Results (GSR) was belong to NIH policy,[13] and according to the purpose of GDS policy, GSR was defined as summary statistics which was provided by researchers, and non-sensitive data was included to the database that was designated by NIH.[14] Namely. NIH used the application and approval of control access data to strike a balance between the data of limitation access and scientific development.

  For responding the COVID-19 and accelerating the development of treatments and vaccines, NIH's data sharing and management policy alleviated the global scientific community’s need for opening and sharing scientific data. This policy established data sharing as a basic component in the research process.[15] In conclusion, internalizing data sharing in the research process will help to update the research process globally and face the scientific challenges of all mankind together.

 

 

[1]NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, organized from Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020).

[2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020).

[3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020).

[4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020).

[5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020).

[6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020).

[7]The list of databases in details please see:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020).

[8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020).

[9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020).

[10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020).

[11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020).

[12]id.

[13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020).

[14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020).

[15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

 

Links
Download
※The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=55&tp=2&i=168&d=8594 (Date:2025/01/17)
Quote this paper
You may be interested
Research on Taiwan’s Policies of Innovative Industry Development in Recent Years (2015-2016)

Research on Taiwan’s Policies of Innovative Industry Development in Recent Years (2015-2016) 1. “Five plus Two” Innovative Industries Policy   On June 15, 2016, Premier Lin Chuan met with a group of prominent business leaders to talk about a government project on five innovative industries, which aim to drive the next generation of businesses in R.O.C.. Subsequently the program was expanded to include “new agriculture” and the “circular economy” as the “+2.” The program was then broadened even further to include the Digital Economy and Cultural Innovation, with even Semiconductors and IC Design included, although the name of the policy remains 5+2. Speaking at the Third Wednesday Club in Taipei, Premier Lin said the industries require more investment to drive the next generation of industry growth momentum in R.O.C., create high-quality jobs, and upgrade the industrial competitiveness. Executive Yuan has selected the five innovative industries of Asia Silicon Valley, smart machinery, green energy, biotech & pharmaceutical industry, and national defense, which will be the core for pushing forward the next-generation industrial growth and improve overall environment by creating a cluster effect that links local and global industries, while simultaneously raising wages and stimulating employment.   Premier Lin said, regarding industrial competitiveness and investment issues the lackluster economy has stifled investment opportunities, and with limited government budgets, the private sector must play the larger role in investments. Regarding the “Five major Innovative Industries” project, Premier Lin said the National Development Council is currently drafting long-term plan to attract talent, create a thriving working environment, and infuse companies with more innovation, entrepreneurship and young workers. In addition, R.O.C. must also cultivate a strong software industry, without which it would be difficult to build a highly intelligent infrastructure.   The National Development Council said the program possess both the capacity of domestic demand and local characteristics, as the core for pushing forward the next-generation industrial growth. The government aims to promote a seamless synergy of investment, technology, and the talent, in order to develop innovative industrial clusters for furthering global linkage and nurturing international enterprises. In the meantime, the government also aims at achieving the enhancement of technology levels, balanced regional development, as well as realizing the benefits of job creation. 2. The Asia Silicon Valley Development Plan   In September 2016 the government approved the Asia Silicon Valley Development Plan, which connect Taiwan to global tech clusters and create new industries for the next generation. By harnessing advanced technological research and development results from around the world, the plan hopes to promote innovation and R&D for devices and applications of the internet of things (IoT), and upgrade Taiwan’s startup and entrepreneurship ecosystem.   The four implementation strategies are as follows:   (1) Building a comprehensive ecosystem to support innovation and entrepreneurship   (2) Connect with international research and development capabilities   (3) Create an IoT value chain   (4) Construct diversified test beds for smart products and services by establishing a quality internet environment   Taiwan’s first wave of industrial development was driven by continuous technological innovation, and the wave that followed saw the information industry become a major source of economic growth. 3. Global Hub for Smart Machinery   On July 21, 2016, Premier Lin Chuan said at a Cabinet meeting, the government aims to forge Taiwan into a global manufacturing hub for intelligent machinery and high-end equipment parts. Upgrading from precision machinery to intelligent machinery is the main goal of putting intelligent machinery industry into focal execution area expecting to create jobs and to maximize the production of production line as well as to forge central Taiwan into a global manufacturing hub for smart machinery. The Ministry of Economic draws up the Intelligent Machinery Promotion Program to establish the applications of the technology and capacity of services that fit the demand of the market. The program embodies two parts. The first is to accelerate the industrialization of intelligent machinery for building an ecosystem. The second is to improve intelligentization by means of introducing the intelligent machinery into the industries.   The execution policy of the Intelligent Machinery Promotion Program is to integrate the intelligent functions such as malfunctions predictions, accuracy compensation, and automatic parameter setting into the machinery industry so as to have the ability to render the whole solutions to the problem. Simultaneously, the program employs three strategies, which are connecting with the local industries, connecting with the future, and connecting with the world, to develop the mentioned vision and objectives. Especially, the way to execute the strategy of connecting with the local industries consists of integrating the capabilities of industry, research organization and the government. At the meantime, the government will encourage the applications of smart vehicles and unmanned aerial vehicles and train the talents as well. The thinking of connecting with the future lies in the goal of deepening the technologies, establishing systematic solutions, and providing a testing areas, which focus on the related applications such as aerospace, advanced semiconductor, smart transportation, green vehicles, energy industry, whole solutions between factories, intelligent man-machine coordination, and robots of machine vision combined with intelligent machinery applications. The government would strengthen the cross-cutting cooperation to develop machines for aerospace and integrate the system of industrial division to form a cluster in order to create Taiwanese IoT technology. Eventually, Taiwan will be able to connect with the world, enhance international cooperation, expand export trade and push industry moving toward the age of information and digital economy and break the edge of industry technology to make the industry feel the goodwill of the government. 4. Green energy innovations   The government’s “five plus two” innovative industries program includes a green energy industrial innovation plan passed October 27, 2016 that will focus on Taiwan’s green needs, spur extensive investments from within and outside the country, and increase quality employment opportunities while supporting the growth of green energy technologies and businesses.   The government is developing the Shalun Green Energy Science City. The hub’s core in Shalun will house a green energy technology research center as well as a demo site, providing facilities to develop research and development (R&D) capabilities and conduct the requisite certification and demonstration procedures. The joint research center for green energy technologies will integrate the efforts of domestic academic institutions, research institutes, state-run enterprises and industry to develop green energy technologies, focusing on four major functions: creating, conserving and storing energy, as well as system integration. Development strategies include systems integration and finding better ways to conserve, generate and store energy by promoting green energy infrastructure, expanding renewable energy capabilities and cooperating with large international firms.   The emergence of the green economy has prompted the government to build infrastructure that will lay the foundation for Taiwan’s green energy sector, transform the nation into a nuclear-free society, and spur industrial innovation. For innovative technology industries, green energy industries can drive domestic economic development by attracting more venture capital and creating more employment opportunities. 5. Biomedical Industry Innovation Program   To facilitate development of Taiwan’s biomedical industry, the government proposed a “biomedical industrial innovation promotion program” on November 10, 2016 to serve as the nation’s new blueprint for innovative biomedical research and development (R&D). To facilitate development of the biomedical industry, the government proposed a “biomedical industrial innovation promotion program”. The program centered on the theme of “local, global and future links,” “the biomedical industrial innovation promotion program” includes four action plans:   (1) Build a comprehensive ecosystem   To address a rapidly ageing global population, Taiwan will enhance the biomedical industry’s capacity for innovation by focusing on talent, capital, topic selection, intellectual property, laws and regulations, and resources.   (2) Integrate innovative business clusters   Established by the Ministry of Science and Technology and based in Hsinchu Biomedical Science Park, the center will serve as a government think tank on related issues. It is also tasked with initiating and advancing exchanges among local and foreign experts, overseeing project implementation, promoting investment and recruiting talents. Equally important, it will play a central role in integrating resources from other biomedical industry clusters around the country, including Nangang Software Park in Taipei City, Central Taiwan Science Park in Taichung City and Southern Science Park in Tainan City.   (3) Connect global market resources   Building on Taiwan’s advantages, promote M&A and strategic alliances, and employ buyout funds and syndicated loans to purchase high-potential small and medium-sized international pharmaceutical companies, medical supply companies, distributors and service providers. Use modern mosquito-borne disease control strategies as the foundation of diplomatic cooperation, and promote the development of Taiwan’s public health care and medical services in Southeast Asian countries.   (4) Promote specialized key industries   Promote niche precision medical services, foster clusters of world-class specialty clinics, and develop industries in the health and wellness sectors. 6. DIGITAL NATION AND INNOVATIVE ECONOMIC DEVELOPMENT PLAN    On November 24, 2016, the Executive Yuan promote the Digital Nation and Innovative Economic Development Plan (2017-2025) (DIGI+ program), the plan’s main goals for 2025 are to grow R.O.C.’s digital economy to NT $ 6.5 trillion (US$205.9 billion), increase the digital lifestyle services penetration rate to 80 percent, speed up broadband connections to 2 Gbps, ensure citizens’ basic rights to have 25 Mbps broadband access, and put R.O.C. among the top 10 information technology nations worldwide.    In addition to the industrial economy, the program can jump off bottlenecks in the past industrial development, and promote the current Internet of things, intelligent machinery, green energy, medical care and other key national industries, but also attaches great importance to strengthening the digital infrastructure construction, the development of equal active, as well as the creation of a service-oriented digital government. It is also hoped that through the construction of a sustainable and intelligent urban and rural area, the quality of life will be improved and the people will enjoy a wealthy and healthy life. Over the next 8 years, the government will spend more than NT $ 150 billion.   The plan contains several important development strategies: DIGI+Infrastructure: Build infrastructure conducive to digital innovation. DIGI+Talent: Cultivate digital innovation talent. DIGI+Industry: Support cross-industry transformation through digital innovation. DIGI+Rights: Make R.O.C. an advanced society that respects digital rights and supports open online communities. DIGI+Cities: Build smart cities through cooperation among central and local governments and the industrial, academic and research sectors. DIGI+Globalization: Boost R.O.C.’s standing in the global digital service economy.   The program aims to build a favorable environment for digital innovation and to create a friendly legal environment to complete the draft amendments to the Digital Communications Law and the Telecommunications Act as soon as possible, foster cross-domain digital talents and develop advanced digital technologies, To create a digital economy, digital government, network society, smart urban and rural and other national innovation ecological environment in order to achieve "the development of active network society, promote high value innovation economy, open up rich countries of the policy vision.    In order to achieve the overall effectiveness of the DIGI + program, interdisciplinary, inter-ministerial, inter-departmental and inter-departmental efforts will be required to collaborate with the newly launched Digital National Innovation Economy (DIGI +) Promotion Team. 7. “NEW AGRICULTURE” PROMOTION PROJECT    At a Cabinet meeting On December 08, 2016, Premier Lin Chuan underscored the importance of a new agricultural paradigm for Taiwan’s economic development, adding that new agriculture is an integral part of the “five plus two” industrial innovation projects proposed by President Tsai Ing-wen. The “new agriculture” promotion project uses innovation technology to bring value to agricultural, and build new agricultural paradigm, agricultural safety systems and promote agricultural marketing. This project also takes resources recycling and environmental sustainability into consideration to promote agricultural transformation, and build a robust new agricultural system.   This agricultural project is expected to increase food self-sufficiency rate to 40%, level up agricultural industry value by NT$43.4 billion, create 370,000 jobs and increase portion of total agricultural exports to new overseas markets to 57% by 2020.   This project contains three aspects:   First is “building new agricultural paradigm”: to protect farmers, agricultural development and ensure sustainability of the environment.   Second is “building agricultural safety systems”: Ensuring product safety and quality, and building a certification system which can be trust by the consumers and is consistent with international standards.   Last but not least is “leveling up agricultural marketing and promotions”: enhancing promotion, making the agricultural industry become profitable and sustainable.   Council of Agriculture’s initiatives also proposed 10 policies to leverage agricultural industry, not only just use the passive subsidies measure of the past. These policies including promoting environmentally friendly farming practices; giving farmers that are beneficial(green) to the land payments; stabilizing farmers’ incomes; increasing the competitiveness of the livestock and poultry industries; using agricultural resources sustainably; ensuring the safety of agricultural products; developing technological innovation; leveling up food security; increasing diversification of domestic and external marketing channels; and increasing agriculture industry added value.    In this statutes report, Council of Agriculture said this project will accelerate reforms, create new agricultural models and safety systems, but also build a new sustainable paradigm of agricultural. Premier Lin Chuan also backed this “five plus two innovative industries” program and “new agriculture” project, and asked Council of Agriculture to reviewing the possible legal changes or amendment that may help to enhance the transformation of agricultural sector.

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (2) – For Example, The Finnish Innovation Fund (“SITRA”)

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (2) – For Example, The Finnish Innovation Fund (“SITRA”) III. Comparison of Strength and Weakness of Sitra Projects 1. Sitra Venture Capital Investment Model   In order to comprehend how to boost innovation business development to upgrade innovation ability, we analyze and compare the innovation systems applied in Sweden, France and Finland[1] . We analyze and compare the characteristics, strength and weakness of innovation promotion models in terms of funding, networking and professional guidance. Generally, the first difficulty which a start-up needs to deal with when it is founded initially is the funding. Particularly, a technology company usually requires tremendous funding when it is founded initially. Some potentially adequate investors, e.g., venture capitals, seldom invest in small-sized start-up (because such overhead as supervision and management fees will account for a high percentage of the investment due to the small total investment amount). Networking means how a start-up integrates such human resources as the management, investors, technical advisors and IP professionals when it is founded initially. Control over such human resources is critical to a new company’s survival and growth. Professional guidance means how professional knowledge and human resource support the start-up’s operation. In order to make its product required by the market, an enterprise usually needs to integrate special professional knowledge. Notwithstanding, the professional knowledge and talents which are available from an open market theoretically often cannot be accessed, due to market failure[2].   Assuming that Sitra’s funding is prioritized as Pre-seed-Initiation stage, Seed-Development stage and Follow-up – Growth stage, under Finland model, at the Pre-seed-Initiation stage, Sitra will provide the fund amounting to EUR20,000 when Tekes will also provide the equivalent fund, provided that the latter purely provides subsidy, while the fund provided by Sitra means a loan to be repaid (without interest) after some time (usually after commercialization), or a loan convertible to shares. Then, the loan would be replaced by soft or convertible (to shares) investment and the source of funding would turn to be angel investors or local seed capital at the Seed-Development stage. At this stage, the angel investors, local seed capital and Sitra will act as the source of funding jointly in Finland, while Tekes will not be involved at this stage. At the Follow-up-Growth stage, like the Sweden model, Sitra will utilize its own investment fund to help mitigate the gap between local small-sized funding and large-sized international venture capital[3].   How to recruit professional human resources is critical to a start-up’s success. Many enterprises usually lack sufficient professional human resources or some expertise. DIILI service network set up by Sitra is able to provide the relevant solutions. DILLI is a network formed by product managers. Its members actively participate in starts-up and seek innovation. They also participate in investment of starts-up independently sometimes. Therefore, they are different from angel investors, because they devote themselves to the starts-up on a full-time basis[4]. In other words, they manage the starts-up as if the starts-up were their own business. 2. Key to Public Sector’s Success in Boosting Development of Innovation Activity Business   In terms of professional guidance, voluntary guidance means the direct supply of such professional resources as financing, human resource and technology to starts-up, while involuntary guidance means the supply of strategic planning in lieu of direct assistance to help the enterprises make routine decisions[5]. The fractured and incomplete professional service attendant market generates low marginal effect. Therefore, it is impossible for the traditional consultation service to mitigate such gap and the investment at the pre-seed initiation stage will be excessive because of the acquisition of the professional services. Meanwhile, professional advisors seldom are involved in consultation services at the pre-seed initiation stage of a start-up because of the low potential added value. Therefore, at such stage, only involuntary professional guidance will be available usually. Under Sitra model, such role is played by an angel investor.   Upon analysis and comparison, we propose six suggested policies to boost innovation activities successfully as the reference when observing Sitra operation. First of all, compared with the French model, Finland Sitra and Sweden model set more specific objectives to meet a start-up’s needs (but there is some defect, e.g., Sitra model lacks voluntary professional guidance). Second, structural budget is a key to the successful model. Sitra will receive the funds in the amount of EUR235,000,000 from the Finnish Government, but its operating expenditure is covered by its own operating revenue in whole. Third, it is necessary to provide working fund in installments and provide fund at the pre-seed-initiation stage. Under both of Finland model and Sweden model, funds will be provided at the pre-seed-initiation stage (Tekes is responsible for providing the fund in Finland). Fourth, the difficulty in networking must be solved. In Sitra, the large-sized talent network set up by it will be dedicated to recruiting human resources. Fifth, the voluntary professional guidance is indispensable at the pre-seed-initiation stage, while the same is unavailable at such stage under Sitra model. Instead, the Sweden model is held as the optimal one, as it has a dedicated unit responsible for solving the difficulty to seek profit. Sixth, soft loan[6] will be successfully only when the loan cannot be convertible to shares. At the pre-seed initiation stage or seed-development stage, a start-up is usually funded by traditional loan. Assuming that the start-up is not expected to gain profit, whether the loan may be convertible to shares will also be taken into consideration when the granting of loan is considered (therefore, the fund provider will not be changed to the “capital” provider). Besides, the government authorities mostly lack the relevant experience or knowledge, or are in no position to negotiate with international large-sized venture capital companies. For example, under the French model, the government takes advantage of its power to restrict the venture capital investment and thereby renders adverse impact to starts-up which seek venture capital. Finally, the supply of own fund to meet the enterprises’ needs at seed-development stage and follow-up-growth stage to mitigate the gap with large-sized venture capital[7] is also required by a successful funding model. IV. Conclusion-Deliberation of Finnish Sitra Experience   As the leading national industrial innovation ability promoter in Finland, Sitra appears to be very characteristic in its organizational framework or operating mechanism. We hereby conclude six major characteristics of Sitra and propose the potential orientation toward deliberation of Taiwan’s industrial innovation policies and instruments. 1. Particularity of Organizational Standing   In consideration of the particularity of Sitra organizational standing, it has two characteristics observable. First, Sitra is under supervision of the Finnish Parliament directly, not subordinated to the administrative organizational system and, therefore, it possesses such strength as flexibility and compliance with the Parliament’s requirements. Such organization design which acts independently of the administrative system but still aims to implement policies has been derived in various forms in the world, e.g., the agency model[8] in the United Kingdom, or the independent apparatus in the U.S.A. Nevertheless, to act independently of the administrative system, it has to deal with the deliberation of responsible political principles at first, which arouses the difficulty in taking care of flexibility at the same time. In Taiwan, the intermediary organizations include independent agencies and administrative corporations, etc., while the former still involves the participation of the supreme administrative head in the right of personnel administration and is subordinated to the ministries/departments of the Executive Yuan and the latter aims to enforce the public missions in the capacity of “public welfare” organization. Though such design as reporting to the Parliament directly is not against the responsible political principles, how the Parliament owns the authority to supervise is the point (otherwise, theoretically, the administrative authorities are all empowered by the parliament in the country which applies the cabinet system). Additionally, why some special authorities are chosen to report to the parliament directly while other policy subjects are not is also disputable. The existence of Sitra also refers to a circumstantial evidence substantiating that Finland includes the innovation policy as one of the important government policies, and also the objective fact that Finland’s innovation ability heads the first in the world.   Second, Sitra is a self-sufficient independent fund, which aims to promote technical R&D and also seeks profit for itself, irrelevant with selection of adequate investment subjects or areas. Instead, for this purpose, the various decisions made by it will deal with the utility and mitigate the gap between R&D and market. Such entity is responsible for public welfare or policy projects and also oriented toward gain from investment to feed the same back to the individuals in the organization. In the administrative system, Sitra is not directed by the administrative system but reports to the Parliament directly. Sitra aims to upgrade the national R&D innovation ability as its long-term goal mission and utilizes the promotion of innovation business and development of venture capital market. The mission makes the profit-orientation compatible with the selection of investment subjects, as an enterprise unlikely to gain profit in the future usually is excluded from the national development view. For example, such industries as green energy, which is not likely to gain profit in a short term, is still worth investing as long as it meets the national development trend and also feasible (in other words, selection of marketable green technology R&D, instead of comparison of the strength and weakness in investment value of green energy and other high-polluted energy). 2. Expressly Distinguished From Missions of Other Ministries/Departments   For the time being, Sitra primarily invests in starts-up, including indirect investment and direct investment, because it relies on successful new technology R&D which may contribute to production and marketability. Starts-up have always been one of the best options, as large-sized enterprises are able to do R&D on their own without the outsourcing needs. Further, from the point of view of an inventor, if the new technology is marketable, it will be more favorable to him if he chooses to start business on his own or make investment in the form of partnership, instead of transfer or license of the ownership to large-sized enterprises (as large-sized enterprises are more capable of negotiation). However, note that Sitra aims to boost innovation activities and only targets at start-up business development, instead of boosting and promoting the start-up per se. Under the requirement that Sitra needs to seek profit for itself, only the business with positive development view will be targeted by Sitra. Further, Sitra will not fund any business other than innovation R&D or some specific industries. Apparently, Sitra only focuses on the connection between innovation activities and start-up, but does not act as the competent authority in charge of small-sized and medium-sized enterprises.   Meanwhile, Sitra highlights that it will not fund academic research activities and, therefore, appears to be distinguished from the competent authority in charge of national scientific research. Though scientific research and technology innovation business, to some extent, are distinguished from each other in quantity instead of quality, abstract and meaningless research is existent but only far away from the commercialization market. Notwithstanding, a lot of countries tend to distinguish basic scientific research from industrial technology R&D in the administration organization's mission, or it has to be. In term of the way in which Sitra carries out its mission, such distinguishing ability is proven directly. 3. Well-Founded Technology Foresight-Based Investment Business   The corporate investments, fund investments and project funding launched by Sitra are all available to the pre-designated subjects only, e.g. ecological sustainable development, energy utilization efficiency, and social structural changes, etc. Such way to promote policies as defining development area as the first priority and then promoting the investment innovation might have some strength and weakness at the same time. First of all, the selection of development areas might meet the higher level national development orientation more therefor, free from objective environmental restrictions, e.g. technical level, leading national technology industries and properties of natural resources. Notwithstanding, an enterprise’s orientation toward innovation R&D might miss the opportunity for other development because of the pre-defined framework. Therefore, such way to promote policies as defining development areas or subjects as the first priority will be inevitably based on well-founded technology foresight-based projects[9], in order to take various subjective and objective conditions into consideration and to forecast the technology development orientation and impact to be faced by the home country’s national and social economies. That is, said strength and weakness will be taken into consideration beforehand for foresight, while following R&D funding will be launched into the technology areas pre-designated after thorough analysis. 4. Self-Interested Investment with the Same High Efficiency as General Enterprises   Sitra aims to gain profit generally, and its individual investment model, e.g., DIILI, also permits marketing managers to involve business operation. The profit-sharing model enables Sitra to seek the same high efficiency as the general enterprises when purusing its innovation activity development. The investment launched by Sitra highlights that it is not “funding” (which Tekes is responsible for in Finland) or the investment not requiring return. Therefore, it has the system design to acquire corporate shares. Sitra participates in a start-up by offering its advanced technology, just like a general market investor who will choose the potential investment subject that might benefit him most upon his personal professional evaluation. After all, the ultimate profit will be retained by Sitra (or said DIILI manger, subject to the investment model). Certainly, whether the industry which requires permanent support may benefit under such model still remains questionable. However, except otherwise provided in laws expressly, said special organization standing might be a factor critical to Sitra profit-seeking model. That is, Sitra is not subordinated to the administrative system but is under supervision of the parliament independently, and how its staff deal with the conflict of interest issues in the capacity other than the public sector’s/private sector’s staff is also one of the key factors to success of the system. 5. Investment Model to Deal With Policy Instruments of Other Authorities/Agencies   Sitra decides to fund a start-up depending on whether it may gain profit as one of its priorities. As aforesaid, we may preliminarily recognize that the same should be consistent with funding to starts-up logically and no “government failure” issue is involved. For example, the funding at the pre-seed-initiation stage needs to tie in with Tekes’ R&D “funding” (and LIKSA service stated herein) and, therefore, may adjust the profit-seeking orientation, thereby causing deviation in promotion of policies. The dispute over fairness of repeated subsidy/funding and rationality of resource allocation under the circumstance must be controlled by a separate evaluation management mechanism inevitably. 6. Affiliation with Enhancement of Regional Innovation Activities   Regional policies cannot be separable from innovation policies, especially in a country where human resources and natural resources are not plentiful or even. Therefore, balancing regional development policies and also integrating uneven resource distribution at the same time is indispensable to upgrading of the entire national social economic benefits. The Finnish experience indicated that innovation activities ought to play an important role in the regional development, and in order to integrate enterprises, the parties primarily engaged in innovation activities, with the R&D ability of regional academic research institutions to upgrade the R&D ability effectively, the relevant national policies must be defined for adequately arranging and launching necessary resources. Sitra's approaches to invest in starts-up, release shares after specific period, integrate the regional resources, upgrade the national innovation ability and boost the regional development might serve to be the reference for universities’ centers of innovative incubator or Taiwan’s local academic and scientific sectors[10] to improve their approaches.   For the time being, the organization engaged in venture capital investment in the form of fund in Taiwan like Sitra of Finland is National Development Fund, Executive Yuan. However, in terms of organizational framework, Sitra is under supervision of the Parliament directly, while National Development Fund is subordinated to the administrative system of Taiwan. Though Sitra and National Development Fund are both engaged in venture capital investments primarily, Sitra carries out its missions for the purpose of “promoting innovative activities”, while the National Development Fund is committed to achieve such diversified goals as “promoting economic changes and national development[11]” and is required to be adapted to various ministries’/departments’ policies. Despite the difference in the administrative systems of Taiwan and Finland, Sitra system is not necessarily applicable to Taiwan. Notwithstanding, Sitra’s experience in promotion and thought about the system might provide a different direction for Taiwan to think when it is conceiving the means and instruments for industrial innovation promotion policies in the future. [1] Bart Clarysse & Johan Bruneel, Nurturing and Growing Innovation Start-Ups: The Role of Policy As Integrator, R&D MANAGEMENT, 37(2), 139, 144-146 (2007). Clarysse & Bruneel analysis and comparison refers to Sweden Chalmers Innovation model, French Anvar/Banque de Developpement des PMEs model and Finland Sitra PreSeed Service model. [2] id. at 141-143. [3] id. at 141. [4] id. at 145-146. [5] id. at 143. [6] The loan to be repaid is not a concern. For example, the competent authority in Sweden only expects to recover one-fourths of the loan. [7] Clarysse & Bruneel, super note 26, at 147-148. [8] 彭錦鵬,〈英國政署之組織設計與運作成效〉,《歐美研究》,第30卷第3期,頁89-141。 [9] Technology foresight must work with the innovation policy road mapping (IPRM) interactively, and consolidate the forecast and evaluation of technology policy development routes. One study case about IPRM of the environmental sustainable development in the telecommunication industry in Finland, the IPRM may enhance the foresighted system and indicates the potential factors resulting in systematic failure. Please see Toni Ahlqvist, Ville Valovirta & Torsti Loikkanen, Innovation policy road mapping as a systemic instrument for forward-looking policy design, Science and Public Policy 39, 178-190 (2012). [10] 參見李昂杰,〈規範新訊:學界科專辦法及其法制配套之解析〉,《科技法律透析》,第23卷第8期,頁33(2011)。 [11] National Development Fund, Executive Yuan website, http://www.df.gov.tw/(tftgkz45150vye554wi44ret)/page-aa.aspx?Group_ID=1&Item_Title=%E8%A8%AD%E7%AB%8B%E5%AE%97%E6%97%A8#(Last visit on 2013/03/28)

Impact of Government Organizational Reform to Research Legal System and Response Thereto (2) – Observation of the Swiss Research Innovation System

Impact of Government Organizational Reform to Research Legal System and Response Thereto (2) – Observation of the Swiss Research Innovation System I. Foreword   Switzerland is a landlocked country situated in Central Europe, spanning an area of 41,000 km2, where the Alps occupy 60% of the territory, while it owns little cultivated land and poor natural resources. In 2011, its population was about 7,950,000 persons[1]. Since the Swiss Federal was founded, it has been adhering to a diplomatic policy claiming neutrality and peace, and therefore, it is one of the safest and most stable countries in the world. Switzerland is famous for its high-quality education and high-level technological development and is very competitive in biomedicine, chemical engineering, electronics and metal industries in the international market. As a small country with poor resources, the Swiss have learnt to drive their economic and social development through education, R&D and innovation a very long time ago. Some renowned enterprises, including Nestle, Novartis and Roche, are all based in Switzerland. Meanwhile, a lot of creative small-sized and medium-sized enterprises based in Switzerland are dedicated to supporting the export-orientation economy in Switzerland.   Switzerland has the strongest economic strength and plentiful innovation energy. Its patent applications, publication of essay, frequencies of quotation and private enterprises’ innovation performance are remarkable all over the world. According to the Global Competitiveness Report released by the World Economic Forum (WEF), Switzerland has ranked first among the most competitive countries in the world for four years consecutively since 2009[2]. Meanwhile, according to the Global Innovation Index (GII) released by INSEAD and the World Intellectual Property Organization (WIPO) jointly, Switzerland has also ranked first in 2011 and 2012 consecutively[3]. Obviously, Switzerland has led the other countries in the world in innovation development and economic strength. Therefore, when studying the R&D incentives and boosting the industrial innovation, we might benefit from the experience of Switzerland to help boost the relevant mechanism in Taiwan.   Taiwan’s government organization reform has been launched officially and boosted step by step since 2012. In the future, the National Science Council will be reformed into the “Ministry of Science and Technology”, and the Ministry of Economic Affairs into the “Ministry of Economy and Energy”, and the Department of Industrial Development into the “Department of Industry and Technology”. Therefore, Taiwan’s technology administrative system will be changed materially. Under the new government organizational framework, how Taiwan’s technology R&D and industrial innovation system divide work and coordinate operations to boost the continuous economic growth in Taiwan will be the first priority without doubt. Support of innovation policies is critical to promotion of continuous economic growth. The Swiss Government supports technological research and innovation via various organizations and institutions effectively. In recent years, it has achieved outstanding performance in economy, education and innovation. Therefore, we herein study the functions and orientation of the competent authorities dedicated to boosting research and innovation in Switzerland, and observe its policies and legal system applied to boost the national R&D in order to provide the reference for the functions and orientation of the competent authorities dedicated to boosting R&D and industrial innovation in Taiwan. II. Overview of Swiss Federal Technology Laws and Technology Administrative System   Swiss national administrative organization is subject to the council system. The Swiss Federal Council is the national supreme administrative authority, consisting of 7 members elected from the Federal Assembly and dedicated to governing a Federal Government department respectively. Switzerland is a federal country consisting of various cantons that have their own constitutions, councils and governments, respectively, entitled to a high degree of independence.   Article 64 of the Swiss Federal Constitution[4] requires that the federal government support research and innovation. The “Research and Innovation Promotion Act” (RIPA)[5] is dedicated to fulfilling the requirements provided in Article 64 of the Constitution. Article 1 of the RIPA[6] expressly states that the Act is enacted for the following three purposes: 1. Promoting the scientific research and science-based innovation and supporting evaluation, promotion and utilization of research results; 2. Overseeing the cooperation between research institutions, and intervening when necessary; 3. Ensuring that the government funding in research and innovation is utilized effectively. Article 4 of the RIPA provides that the Act shall apply to the research institutions dedicated to innovation R&D and higher education institutions which accept the government funding, and may serve to be the merit for establishment of various institutions dedicated to boosting scientific research, e.g., the National Science Foundation and Commission of Technology & Innovation (CTI). Meanwhile, the Act also provides detailed requirements about the method, mode and restriction of the government funding.   According to the RIPA amended in 2011, the Swiss Federal Government’s responsibility for promoting innovation policies has been extended from “promotion of technology R&D” to “unification of education, research and innovation management”, making the Swiss national industrial innovation framework more well-founded and consistent[8] . Therefore, upon the government organization reform of Switzerland in 2013, most of the competent authorities dedicated to technology in Swiss have been consolidated into the Federal Department of Economic Affairs, Education and Research.   Under the framework, the Swiss Federal Government assigned higher education, job training, basic scientific research and innovation to the State Secretariat for Education, Research and Innovation (SERI), while the Commission of Technology & Innovation (CTI) was responsible for boosting the R&D of application scientific technology and industrial technology and cooperation between the industries and academy. The two authorities are directly subordinate to the Federal Department of Economic Affairs, Education and Research (EAER). The Swiss Science and Technology Council (SSTC), subordinate to the SERI is an advisory entity dedicated to Swiss technology policies and responsible for providing the Swiss Federal Government and canton governments with the advice and suggestion on scientific, education and technology innovation policies. The Swiss National Science Foundation (SNSF) is an entity dedicated to boosting the basic scientific R&D, known as the two major funding entities together with CTI for Swiss technology R&D. The organizations, duties, functions and operations of certain important entities in the Swiss innovation system are introduced as following. Date source: Swiss Federal Department of Economic Affairs, Education and Research official website Fig. 1 Swiss Innovation Framework Dedicated to Boosting Industries-Swiss Federal Economic, Education and Research Organizational Chart 1. State Secretariat of Education, Research and Innovation (SERI)   SERI is subordinate to the Department of Economic Affairs, Education and Research, and is a department of the Swiss Federal Government dedicated to managing research and innovation. Upon enforcement of the new governmental organization act as of January 1, 2013, SERI was established after the merger of the State Secretariat for Education and Research, initially subordinate to Ministry of Interior, and the Federal Office for Professional Education and Technology (OEPT), initially subordinated to Ministry of Economic Affairs. For the time being, it governs the education, research and innovation (ERI). The transformation not only integrated the management of Swiss innovation system but also unified the orientations toward which the research and innovation policy should be boosted.   SERI’s core missions include “enactment of national technology policies”, “coordination of research activities conducted by higher education institutions, ETH, and other entities of the Federal Government in charge of various areas as energy, environment, traffic and health, and integration of research activities conducted by various government entities and allocation of education, research and innovation resources. Its functions also extend to funding the Swiss National Science Foundation (SNSF) to enable SNSF to subsidize the basic scientific research. Meanwhile, the international cooperation projects for promotion of or participation in research & innovation activities are also handled by SERI to ensure that Switzerland maintains its innovation strength in Europe and the world.   The Swiss Science and Technology Council (SSTC) is subordinate to SERI, and also the advisory unit dedicated to Swiss technology policies, according to Article 5a of RIPA[9]. The SSTC is responsible for providing the Swiss Federal Government and canton governments with advice and suggestion about science, education and innovation policies. It consists of the members elected from the Swiss Federal Council, and a chairman is elected among the members. 2. Swiss National Science Foundation (SNSF)   The Swiss National Science Foundation (SNSF) is one of the most important institutions dedicated to funding research, responsible for promoting the academic research related to basic science. It supports about 8,500 scientists each year. Its core missions cover funding as incentives for basic scientific research. It grants more than CHF70 million each year. Nevertheless, the application science R&D, in principle, does not fall in the scope of funding by the SNSF. The Foundation allocates the public research fund under the competitive funding system and thereby maintains its irreplaceable identity, contributing to continuous output of high quality in Switzerland.   With the support from the Swiss Federal Government, the SNSF was established in 1952. In order to ensure independence of research, it was planned as a private institution when it was established[10]. Though the funding is provided by SERI, the SNSF still has a high degree of independence when performing its functions. The R&D funding granted by the SNSF may be categorized into the funding to free basic research, specific theme-oriented research, and international cooperative technology R&D, and the free basic research is granted the largest funding. The SNSF consists of Foundation Council, National Research Council and Research Commission[11]. Data source: prepared by the Study Fig. 2  Swiss National Science Foundation Organizational Chart (1) Foundation Council   The Foundation Council is the supreme body of the SNSF[12], which is primarily responsible for making important decisions, deciding the role to be played by the SNSF in the Swiss research system, and ensuring SNSF’s compliance with the purpose for which it was founded. The Foundation Council consists of the members elected from the representatives from important research institutions, universities and industries in Swiss, as well as the government representatives nominated by the Swiss Federal Council. According to the articles of association of the SNSF[13], each member’s term of office should be 4 years, and the members shall be no more than 50 persons. The Foundation Council also governs the Executive Committee of the Foundation Council consisting of 15 Foundation members. The Committee carries out the mission including selection of National Research Council members and review of the Foundation budget. (2) National Research Council   The National Research Council is responsible for reviewing the applications for funding and deciding whether the funding should be granted. It consists of no more than 100 members, mostly researchers in universities and categorized, in four groups by major[14], namely, 1. Humanities and Social Sciences; 2. Math, Natural Science and Engineering; 3. Biology and Medical Science; and 4. National Research Programs (NRPs)and National Centers of Competence in Research (NCCRs). The NRPs and NCCRs are both limited to specific theme-oriented research plans. The funding will continue for 4~5years, amounting to CHF5 million~CHF20 million[15]. The specific theme-oriented research is applicable to non-academic entities, aiming at knowledge and technology transfer, and promotion and application of research results. The four groups evaluate and review the applications and authorize the funding amount.   Meanwhile, the representative members from each group form the Presiding Board dedicated to supervising and coordinating the operations of the National Research Council, and advising the Foundation Council about scientific policies, reviewing defined funding policies, funding model and funding plan, and allocating funding by major. (3) Research Commissions   Research Commissions are established in various higher education research institutions. They serve as the contact bridge between higher education academic institutions and the SNSF. The research commission of a university is responsible for evaluating the application submitted by any researcher in the university in terms of the school conditions, e.g., the school’s basic research facilities and human resource policies, and providing advice in the process of application. Meanwhile, in order to encourage young scholars to attend research activities, the research committee may grant scholarships to PhD students and post-doctor research[16]. ~to be continued~ [1] SWISS FEDERAL STATISTICS OFFICE, Switzerland's population 2011 (2012), http://www.bfs.admin.ch/bfs/portal/en/index/news/publikationen.Document.163772.pdf (last visited Jun. 1, 2013). [2] WORLD ECONOMIC FORUM [WEF], The Global Competiveness Report 2012-2013 (2012), http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2012-13.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2011-2012 (2011), http://www3.weforum.org/docs/WEF_GCR_Report_2011-12.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2010-2011 (2010), http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2010-11.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2009-2010 (2009),. http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2009-10.pdf (last visited Jun. 1, 2013). [3] INSEAD, The Global Innovation Index 2012 Report (2012), http://www.globalinnovationindex.org/gii/GII%202012%20Report.pdf (last visited Jun. 1, 2013); INSEAD, The Global Innovation Index 2011 Report (2011), http://www.wipo.int/freepublications/en/economics/gii/gii_2011.pdf (last visited Jun. 1, 2013). [4] SR 101 Art. 64: “Der Bund fördert die wissenschaftliche Forschung und die Innovation.” [5] Forschungs- und Innovationsförderungsgesetz, vom 7. Oktober 1983 (Stand am 1. Januar 2013). For the full text, please see www.admin.ch/ch/d/sr/4/420.1.de.pdf (last visited Jun. 3, 2013). [6] Id. [7] Id. [8] CTI, CTI Multi-year Program 2013-2016 7(2012), available at http://www.kti.admin.ch/?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDeYR,hGym162epYbg2c_JjKbNoKSn6A-- (last visited Jun. 3, 2013). [9] Supra note 5. [10] Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/default.aspx (last visited Jun. 3, 2013). [11] Id. [12] Foundation Council, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/foundationcouncil.aspx (last visited Jun. 3, 2013). [13] See Statutes of Swiss National Science Foundation Art.8 & Art. 9, available at http://www.snf.ch/SiteCollectionDocuments/statuten_08_e.pdf (last visited Jun. 3, 2013). [14] National Research Council, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/researchcouncil/Pages/default.aspx (last visted Jun.3, 2013). [15] Theres Paulsen, VISION RD4SD Country Case Study Switzerland (2011), http://www.visionrd4sd.eu/documents/doc_download/109-case-study-switzerland (last visited Jun.6, 2013). [16] Research Commissions, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/researchcommissions.aspx (last visted Jun. 6, 2013).

Introduction to Taiwan’s Guidelines for Implementing Decentralized Elements in Medicinal Product Clinical Trials

Introduction to Taiwan’s Guidelines for Implementing Decentralized Elements in Medicinal Product Clinical Trials 2023/12/15 The development of digital tools such as the internet, apps, and wearable devices have meant major breakthroughs for clinical trials. These advances have the potential to reduce the frequency of trial subject visits, accelerate research timelines, and lower the costs of drug development. The COVID-19 pandemic has further accelerated the use of digital tools, prompting many countries to adopt decentralized measures that enable trial subjects to participate in clinical trials regardless of their physical location. In step with the transition into the post-pandemic era, the Taiwan Food and Drug Administration (TFDA) issued the Guidelines for Implementing Decentralized Elements in Medicinal Product Clinical Trials in June, 2023[1]. The Guidelines are intended to cover a wide array of decentralized measures; they aim to increase trial subjects’ willingness to participate in trials, reduce the need for in-person visits to clinical trial sites, enhance real-time data acquisition during trials, and enable clinic sponsors and contract research organizations to process data remotely. I. Key Points of Taiwan’s Guidelines for Implementing Decentralized Elements in Medicinal Product Clinical Trials The Guidelines cover primarily the following matters: General considerations for implementing decentralized measures; trial subject recruitment and electronic informed consent; delivery and provision of investigational medicinal products; remote monitoring of trial subject safety; trial subject reporting of adverse events; remote data monitoring; and information systems and electronic data collection/processing/storage. 1. General Considerations for Implementing Decentralized Measures (1) During clinical trial execution, a reduction in trial subject in-person visits may present challenges to medical observation. It is recommended that home visits for any given trial subject be conducted by the principal investigator, sub-investigator, or a single, consistent delegated study nurse. (2) Sponsors must carefully evaluate all of the trial design’s decentralization measures to ensure data integrity. (3) Sponsors must conduct risk assessments for each individual trial, and must confirm the rationality of choosing decentralized measures. These decentralized measures must also be incorporated into the protocol. (4) When electronically collecting data, sponsors must ensure information system reliability and data security. Artificial intelligence may be considered for use in decentralized clinical trials; sponsors must carefully evaluate such systems, especially when they touch on determinations for critical data or strategies. (5) As the design of decentralized clinical trials is to ensure equal access to healthcare services, it must provide patients with a variety of ways to participate in clinical trials. (6) When implementing any decentralized measures, it is essential to ensure that the principal investigator and sponsor adhere to the Regulations for Good Clinical Practice and bear their respective responsibilities for the trial. (7) The use of decentralized measures must be stated in the regulatory application, and the Checklist of Decentralized Elements in Medicinal Product Clinical Trials must be included in the submission. 2. Subject Recruitment and Electronic Informed Consent (1) Trial subject recruitment through social media or established databases may only be implemented after the Institutional Review Board reviews and approves of the recruitment methods and content. (2) Must comply with the Principles for Recruiting Clinical Trial Subjects in medicinal product trials, the Personal Data Protection Act, and other regulations. (3) Regarding clinical trial subject informed consent done through digital software or devices, if it complies with Article 4, Paragraph 2 of the Electronic Signatures Act, that is, if the content can be displayed in its entirety and continues to be accessible for subsequent reference, then so long as the trial subject agrees to do so, the signature may be done via a tablet or other electronic device. The storage of signed electronic Informed Consent Forms (eICF) must align with the aforementioned Principles and meet the competent authority’s access requirements. 3. Delivery and Provision of Investigational Medicinal Products (1) The method of delivering and providing investigational medicinal products and whether trial subjects can use them on their own at home depends to a high degree on the investigational medicinal product’s administration route and safety profile. (2) When investigational medicinal products are delivered and provided through decentralized measures to trial subjects, this must be documented in the protocol. The process of delivering and providing said products must also be clearly stated in the informed consent form; only after being explained to a trial subject by the trial team, and after the trial subject’s consent is obtained, may such decentralized measures be used. (3) Investigational products prescribed by the principal investigator/sub-investigator must be reviewed by a delegated pharmacist to confirm that the investigational products’ specific items, dosage, duration, total quantity, and labeling align with the trial design. The pharmacist must also review each trial subject’s medication history, to ensure there are no medication-related issues; only then, and only in a manner that ensures the investigational product’s quality and the subject’s privacy, may delegated and specifically-trained trial personnel provide the investigational product to the subject. (4) Compliance with relevant regulations such as the Pharmaceutical Affairs Act, Pharmacists Act, Regulations on Good Practices for Drug Dispensation, and Regulations for Good Clinical Practice is required. 4. Remote Monitoring of Subject Safety (1) Decentralized trial designs involve trial subjects performing relatively large numbers of trial-related procedures at home. The principal investigator must delegate trained, qualified personnel to perform tasks such as collecting blood samples, administering investigational products, conducting safety monitoring, doing adverse event tracking, etc. (2) If trial subjects receive protocol-prescribed testing at nearby medical facilities or laboratories rather than at the original trial site, these locations must be authorized by the trial sponsor and must have relevant laboratory certification; only then may they collect or analyze samples. Such locations must provide detailed records to the principal investigator, to be archived in the trial master file. (3) The trial protocol and schedule must clearly specify which visits must be conducted at the trial site; which can be conducted via phone calls, video calls, or home visits; which tests must be performed at nearby laboratories; and whether trial subjects have multiple or single options at each visit. 5. Subject Reporting of Adverse Events (1) If the trial uses a digital platform to enhance adverse event reporting, trial subjects must be able to report adverse events through the digital platform, such as via a mobile phone app; that is, the principal investigator must be able to immediately access such adverse event information. (2) The principal investigator must handle such reports using risk-based assessment methods. The principal investigator must validate the adverse event reporting platform’s effectiveness, and must develop procedures to identify potential duplicate reports. 6. Remote Data Monitoring (1) If a sponsor chooses to implement remote monitoring, it must perform a reasonability assessment to confirm the appropriateness of such monitoring and establish a remote monitoring plan. (2) The monitoring plan must include monitoring strategies, monitoring personnel responsibilities, monitoring methods, rationale for such implementation, and critical data and processes that must be monitored. It must also generate comprehensive monitoring reports for audit purposes. (3) The sponsor is responsible for ensuring the implementation of remote monitoring, and must conduct risk assessments regarding the implementation process’ data protection and information confidentiality. 7. Information Systems and Electronic Data Collection, Processing, and Storage (1) In accordance with the Regulations for Good Clinical Practice, data recorded in clinical trials must be trustworthy, reliable, and verifiable. (2) It must be ensured that all organizations participating in the clinical trial have a full picture of the data flow. It is recommended that the trial protocol and trial-related documents include data flow diagrams and additional explanations. (3) Define the types and scopes of subject personal data that will be collected, and ensure that every step in the process properly protects their data in accordance with the Personal Data Protection Act. II. A Comparison with Decentralized Trial Regulations in Other Countries Denmark became the first country in the world to release regulatory measures on decentralized trials, issuing the “Danish Medicines Agency’s Guidance on the Implementation of Decentralized Elements in Clinical Trials with Medicinal Products” in September 2021[2]. In December 2022, the European Union as a whole released its “Recommendation Paper on Decentralized Elements in Clinical Trials”[3]. The United States issued the draft “Decentralized Clinical Trials for Drugs, Biological Products, and Devices” document in May 2023[4]. The comparison in Table 1 shows that Taiwan’s guidelines a relatively similar in structure to those of Denmark and the EU; the US guidelines also cover medical device clinical trials. Table 1: Summary of Decentralized Clinical Trial Guidelines in Taiwan, Denmark, the European Union as a whole, and the United States Taiwan Denmark European Union as a whole United States What do the guidelines apply to? Medicinal products Medicinal products Medicinal products Medicinal products and medical devices Trial subject recruitment and electronic informed consent Covers informed consent process; informed consent interview; digital information sheet; trial subject consent form signing; etc. Covers informed consent process; informed consent interview; trial subject consent form signing; etc. Covers informed consent process; informed consent interview; digital information sheet; trial subject consent form signing; etc. Covers informed consent process; informed consent interview; etc. Delivery and provision of investigational medicinal products Delegated, specifically-trained trial personnel deliver and provide investigational medicinal products. The investigator or delegated personnel deliver and provide investigational medicinal products. The investigator, delegated personnel, or a third-party, Good Distribution Practice-compliant logistics provider deliver and provide investigational medicinal products. The principal investigator, delegated personnel, or a distributor deliver and provide investigational products. Remote monitoring of trial subject safety Trial subjects may do return visits at trial sites, via phone calls, via video calls, or via home visits, and may undergo testing at nearby laboratories. Trial subjects may do return visits at trial sites, via phone calls, via video calls, or via home visits, and may undergo testing at nearby laboratories. Trial subjects may do return visits at trial sites, via phone calls, via video calls, or via home visits. Trial subjects may do return visits at trial sites, via phone calls, via video calls, or via home visits, and may undergo testing at nearby laboratories. Trial subject reporting of adverse events Trial subjects may self-report adverse events through a digital platform. Trial subjects may self-report adverse events through a digital platform. Trial subjects may self-report adverse events through a digital platform. Trial subjects may self-report adverse events through a digital platform. Remote data monitoring The sponsor may conduct remote data monitoring. The sponsor may conduct remote data monitoring. The sponsor may conduct remote data monitoring (not permitted in some countries). The sponsor may conduct remote data monitoring. Information systems and electronic data collection, processing, and storage The recorded data must be credible, reliable, and verifiable. Requires an information system that is validated, secure, and user-friendly. The recorded data must be credible, reliable, and verifiable. Must ensure data reliability, security, privacy, and confidentiality. III. Conclusion The implementation of decentralized clinical trials must be approached with careful assessment of risks and rationality, with trial subject safety, rights, and well-being as top priorities. Since Taiwan’s Guidelines for Implementing Decentralized Elements in Medicinal Product Clinical Trials were just announced in June of this year, the status of decentralized clinical trial implementation is still pending industry feedback to confirm feasibility. The overall goal is to enhance and optimize the clinical trial environment in Taiwan. [1] 衛生福利部食品藥物管理署,〈藥品臨床試驗執行分散式措施指引〉,2023/6/12,https://www.fda.gov.tw/TC/siteListContent.aspx?sid=9354&id=43548(最後瀏覽日:2023/11/2)。 [2] [DMA] DANISH MEDICINES AGENCY, The Danish Medicines Agency’s guidance on the Implementation of decentralised elements in clinical trials with medicinal products (2021),https://laegemiddelstyrelsen.dk/en/news/2021/guidance-on-the-implementation-of-decentralised-elements-in-clinical-trials-with-medicinal-products-is-now-available/ (last visited Nov. 2, 2023). [3] [HMA] HEADS OF MEDICINES AGENCIES, [EC] EUROPEAN COMMISSION & [EMA] EUROPEAN MEDICINES AGENCY, Recommendation paper on decentralised elements in clinical trials (2022),https://health.ec.europa.eu/latest-updates/recommendation-paper-decentralised-elements-clinical-trials-2022-12-14_en (last visited Nov. 2, 2023). [4] [US FDA] US FOOD AND DRUG ADMINISTRATION, Decentralized Clinical Trials for Drugs, Biological Products, and Devices (draft, 2023),https://www.fda.gov/regulatory-information/search-fda-guidance-documents/decentralized-clinical-trials-drugs-biological-products-and-devices (last visited Nov. 2, 2023).

TOP