美國專利商標局月底啓動「三路」試行計畫(“Triway”Pilot Program)

  美國專利商標局(USPTO)在2005年11月,與歐洲專利局(EPO)及日本專利局(JPO)之三邊會前會上,提出了一個簡稱為「三路」(Triway)的檢索共享計畫,該計畫希望能使三局的檢索技術發揮槓桿效果,進而能使專利申請者及各該專利管理當局受惠。

 

  三局其後在2007年11月的三邊會前會上同意先期進行有限的試驗計畫。

 

  「三路」的基本構想乃希望透過縮短時效來推廣資源分享,同時能使申請者及各該管理當局在很短的一定時間內取得三局的檢索結果,進而使申請者及各該局有機會能分享及考量所有的檢索結果,同一協助改善各該局對同一專利申請者專利審定之品質。

 

  在「三路」試行計畫下,各該局對於在巴黎公約下之同一專利申請將適時提早進行檢索,且各該局的檢索結果將由三局共同分享以減少各該局的檢索及審查工作量。

 

  三局同意「三路」試行計畫之試行對象限於在美國專利商標局首次提出申請者,並限於一百個試行專利申請案,試行計畫將在明年的同一時間結束,或在接受一百個試行專利申請案後提前結束。

相關連結
相關附件
※ 美國專利商標局月底啓動「三路」試行計畫(“Triway”Pilot Program), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2852&no=57&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
歐盟資通安全局發布《物聯網安全準則-安全的物聯網供應鏈》

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。   本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。   總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

美國國會眾議院發布數位資產市場結構法案討論稿,期望建立明確監管框架

隨著加密資產與區塊鏈技術的迅速發展,美國國會眾議院於2025年5月5日提出《數位資產市場結構法案討論稿》(Digital Asset Market Structure Discussion Draft),旨在制定新法並同時修改多部美國聯邦金融法規,以建立數位資產的清晰監管框架,期促進美國數位資產市場創新、投資人保障與維護市場公平,其討論重點如下: 1. 數位資產定義與監管職權劃分:於證券法(Securities Act)與商品交易法(Commodity Exchange Act)新增大量關於數位資產的定義,並明確劃分證券交易委員會(Securities and Exchange Commission, SEC)與商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)的監管界線。 2. 去中心化金融(Decentralized Finance, DeFi)、穩定幣與成熟區塊鏈系統的豁免機制:成熟區塊鏈系統、受核准的支付型穩定幣(Permitted Payment Stablecoins)與特定DeFi活動(如:驗證交易、提供用戶介面等)得排除法令適用,為區塊鏈項目提供更彈性的監管途徑。 3. 市場參與者註冊要求:規定數位商品交易所、經紀商、交易商之市場參與者,應向CFTC註冊之相關要求,遵循包含資本規範、客戶資金隔離、交易監控、報告義務等原則,以提升市場透明度和投資者保護。 4. 數位資產領域研究:要求SEC與CFTC應設立金融創新辦公室(Offices of Financial Innovation) 和創新實驗室(LabCFTC),進行多項關於數位資產領域的研究,包含DeFi、金融市場基礎設施之改善等,以提供監管機構新興技術資訊。

美國法院於 8 月 9 日判決「隱私權合理期待不及於網際網路用戶資訊」

  在 Freedman v. America Online 一案中,原告 Freedman 使用 AOL(ISP 業者 ) 的電子郵件帳號匿名寄送一封載有「末日近了 (The end is near) 」之郵件給另外兩個康乃迪克州之居民,該郵件之收文者將其視為對於安全威脅之信件並立即報警處理。警員 Young 和警官 Bensey 雖製作了筆錄與提出搜索令 ( 授權令 ) 之申請,然而在將該等文件送交州檢察官辦公室並經同意前, Young 即將該等文件傳真給 AOL 法務部門,一周後 AOL 即提供 Freedman 之姓名、地址、電話號碼與其他許多與原告之 AOL 電子郵件帳號有關之訊息,原告因而提起訴訟,主張提供其帳戶資料之行為侵犯其隱私權,已違反美國憲法修正條文第四條。   法院認為在美國憲法修正條文第四條之意旨下,網路使用者不能合理期待其用戶資訊為其隱私權所及範圍,主要理由為當網路使用者申請使用服務前,用戶本身已在其本身知悉之情況下將其資訊提供給 ISP 業者,使該 ISP 業者得以提供相關服務,且 AOL 已在其使用合約中註明,倘於其用戶或他人受有人身威脅 (physical threat) 之個別案例之情況下 ( 如同本案例事實 ) , AOL 將提供用戶資訊,而「電子通訊隱私權法案 (The Electronic Communications Privacy Act) 」第 2510 條以下條文亦規定,於有人身損害之虞 (the risk of physical injury) 之情況下,用戶資料之揭露即具正當性。

TOP