美國紐約州律師 Eliot Spitzer 4 月 4 日 表示, 他已經 對 Direct Revenue LLC 這家網路公司提出告訴。控訴其秘密安裝上百萬之間諜軟體( Spyware )至網路使用者的電腦中,或利用已安裝於使用者硬碟中之間諜軟體,以彈出視窗方式進行廣告,而其中有很多都屬於色情廣告;這些程式具追蹤網路使用者活動之功能,且一經下載,使用者就極難移除甚至不易察覺。 Spitzer 將此訴訟上訴到紐約州之最高法院,認為 Spitzer 應該為未經使用者同意秘密安裝間諜軟體,或透過已存在的間諜軟體寄送廣告之行為負責。 Spitzer 同時要求 Direct Revenue ,應對其所受之利益和不特定的金錢損害,負擔賠償責任。 去年( 2005 ), Spitzer 也對在洛杉磯的 Intermix Media Inc. 提起告訴。這家公司擁有一個相當受歡迎的 MySpace 的社交網絡網站,卻將間諜軟體隱藏附隨在上百萬的免費程式中,最後 Intermix Media Inc. 因而付了 750 萬美元。 Spitzer 表示這種詐欺的行為對消費者極不公平,且將對利用正當管道行銷的企業以及需要消費者信任的小型網路商家造成損害。 Spitzer 也說到,他將會繼續的與消費者站在同一陣線,與消費者共同為他們的掌控權而戰。 Direct Revenue 網站說明指出,他們已事先取得消費者之同意,而其提供之內容資訊和免費軟體,目的在交換傳遞廣告之功能。
行動生活之隱私爭議-現行法制能否妥善處理位置資訊衍生問題 聯合國教科文組織發布《人工智慧倫理建議書》草案聯合國教科文組織於2020年9月發布《人工智慧倫理建議書》草案(First Draft Of The Recommendation On The Ethics Of Artificial Intelligence)(下稱建議書),以全球性的視野與觀點出發,為第一份全球性關於人工智慧倫理的建議書,試圖對人工智慧倫理作出框架性規定,對照其他區域性組織或個別國家人工智慧倫理準則或原則,著重之處稍有差異。該建議書係由組織總幹事Audrey Azoulay於2020年3月任命24位在人工智慧倫理學方面之跨領域專家,組成專家小組(AD HOC EXPERT GROUP, AHEG),以《建議書》的形式起草全球標準文書。 其主要內容提到六大價值觀:(一)人性尊嚴(Human dignity)、(二)基本人權和自由(Human rights and fundamental freedoms)、(三)不遺漏任何人(Leaving no one behind)、(四)和諧共生(Living in harmony)、(五)可信賴(Trustworthiness)、(六)環境保護(Protection of the Environment)。其中尤值關注處在於,建議書除強調人工智慧的技術、資料及研究需要進行全球範圍的共享外,相當重視世界上所有的國家及地區在人工智慧領域是否能均衡發展。特別在六大價值觀中提出「不遺漏任何人」觀點,也同時呼應了聯合國永續發展目標(Sustainable Development Goals, SDGs)的倡議。在人工智慧技術發展過程中,開發中國家(global south)及相對弱勢的群體是相當容易被忽略的。人工智慧蓬勃發展的時代,若某些群體或個體成為技術弱勢者,不僅在技術發展上有落差,更可能使人工智慧系統容易產生歧視、偏見、資訊和知識鴻溝,其後更將導致全球不平等問題的挑戰。 由專家小組起草的建議書草案已於2020年9月提交給聯合國成員國,作為對建議書的初步報告。該報告將提供給各會員國,並同步提交給預定於2021年召開的政府專家委員會,最後預計於2021年底的提交聯合國教科文組織大會。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。