專利連結/專利扣合機制:國際新藥研發成果保護法制之新興討論議題

  我國藥廠普遍以產製學名藥為主,而新藥研發風險高且非一蹴可及,故當前藥品科專的研發重點以發展類新藥(redesign drugs)主軸,希冀透過類新藥研發的「成功經驗」,引導業界走出學名藥,投入更高層次藥品領域,推動產業發展。鑑於製藥產業乃是高度規管的產業,除了技術研發以外,也必須切實掌握相關的法規議題,避免因不諳法規致使研發投資錯置或浪費。


  觀察國際新藥研發成果保護法制之發展趨勢,藥品查驗登記程序與專利有效性相互扣合的機制(patent-registration linkage),極可能在可預見的未來成為國際間討論的重要議題,鑑於藥品科專之研發補助方向已由學名藥延伸至新藥技術能量,實有必要瞭解政府投入資源鼓勵研發的類新藥,未來由業界承接後是否可能受到此一機制的影響。


  藥品查驗登記程序與專利有效性相互扣合機制一般被簡稱為「專利連結」(patent linkage),「專利連結」亦有稱為「專利扣合」,概念上係指將學名藥(generic drug)的上市審查程序,與原開發藥廠之參考藥品(the originator reference product)的專利權利狀態連結在一起;進一步而言,一旦新藥通過主管機關的審查上市後,只要在該新藥相關的專利有效期間,主管機關即不應核准該新藥之仿製藥品上市。


  專利連結乃是美國藥品法規與專利法交錯下特有之產物,然美國透過不斷地對其貿易伙伴訴求專利連結的重要性,在美國以外,已有多個國家於其藥品審查程序中建立與專利之連結關係,例如:加拿大、新加坡、澳洲等國。在藥品上市審查之過程中予以專利連結之目的,係為透過機制設計,確保主管機關不得在原開發藥廠之專利到期前核准學名藥上市。在美國法制下,專利連結的運作植基於四大核心概念:(一)新藥相關之專利資訊應於上市後系統化公開;(二)新藥專利有效期間內,主管機關不應核可後續申請者之上市申請;(三)盡可能於許可學名藥上市前解決專利有效性爭議;(四)鼓勵未涉及專利侵權之學名藥及早上市。

  值得注意的是,美國專利連結法制所講的學名藥,包括狹義及廣義的學名藥,前者是指具有相同的活性成分、相同的劑型、治療相同適應症的藥品;後者則是指對已上市新藥的改良藥品,可見其概念上涵蓋我國當前鼓勵研發的類新藥。專利連結對於類新藥之影響,需視其如何上市而定,若類新藥是以NDA方式申請上市,雖然上市成本高,但其研發成果卻可以因為實施專利連結制度,享有更進一步的保護;另一方面,若廠商基於成本考量不願自行或委託他人進行臨床試驗,因而無法提出完整之NDA申請資料者,則專利連結將會對其產生衝擊。


  綜上所述,雖然專利連結制度具有鼓勵新藥研發的作用,但由於我國當前製藥產業結構仍以中小型規模的學名藥為主,加上我國藥品專利之申請及取得者,90%以上為外國藥廠,故若實施專利連結,短期內勢將衝擊我國製藥產業,且美國、加拿大的實務運作經驗顯示,專利連結制度容易被藥廠濫用,因此我國在考慮是否建立此一制度之前,必須先就我國製藥產業的競爭情勢有所瞭解,並充分掌握我國產業結構與先進國家製藥產業之根本性差異,始能根據我國國情制訂權衡原開發藥廠與學名藥廠雙方利益,並保障公眾健康權益之法制。


  當前最重要者仍是要提醒廠商尊重智慧財產之重要性,既然學名藥是要在專利到期後上市,則學名藥廠商在進行其新藥開發時,自應有完整規劃與佈局。開發狹義學名藥,其幾乎等同原開發藥廠的品牌藥,對於我國廠商技術能力之提升有限,故應鼓勵廠商投入廣義之學名藥(類新藥)之研發,如此不但有迴避專利之可能,亦可逐步累積我國產業之研發能量,則專利連結將不會成為其研發與競爭之阻力。

相關連結
※ 專利連結/專利扣合機制:國際新藥研發成果保護法制之新興討論議題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=452&no=57&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
美國通過最新的電子醫療紀錄之隱私與安全標準

  美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。     這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。     在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

5G汽車協會發布《道路使用者保護白皮書》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年8月24日發布「弱勢道路使用者保護白皮書」(Vulnerable Road User Protection),點出目前道路交通安全對相關道路使用者保護不足,同時揭示未來車聯網(V2X)可提供整體用路人更安全之道路交通環境。   白皮書指出,道路安全是交通政策關鍵,應透過科技技術與政策制定,共同實現道路安全目標。而根據目前統計數據,弱勢道路使用者(Vulnerable Road User,以下簡稱VRU),包含:「行人」、「騎自行車者」、「騎電動車者」、「道路施工者」、「輪椅使用者」及「滑板或是單輪車使用者」,其占交通事故之傷亡比例最高,幾乎超過半數之死亡人數均為VRU,未來更可能因環境或與健康因素,使道路交通使用者數量不斷提升,對VRU之保護將成為未來各國交通之關鍵。   技術層面,則是車輛感測器偵測VRU、路側設備(Roadside Unit, RSU)、行動邊緣計算技術(Mobile Edge Computing, MEC)等,並進一步應用於車聯網下之不同案例情況:(1)高度風險區域:例如車輛進入行人密度極高的地區,透過感測器發出警訊,以即時警惕人車彼此存在,降低視線死角之事故發生率。(2)VRU與車輛透過裝置溝通:如車輛與VRU之間透過手機等設備傳輸相關資料並通訊。(3)車輛透過安全演算系統與VRU及各項設施交換訊息:此項涉及車聯網通訊應用下,車與車(V2V)和車與交通基礎設施(V2I)通訊,透過C-V2X PC5通訊技術軟體,使車輛、基礎設施與VRU之隨身電子設備之間得以進行通訊,降低事故碰撞發生。   綜上,未來應建立國際通用的車聯網之弱勢道路使用者保護標準,而非因區域而不同之標準,如目前美國汽車工程師協會之個人安全訊息標準(Personal Safety Messages, SAE PSM)及歐盟電信標準協會之弱勢道路使用者分布(Vulnerable Analysis Mapping , ETSI VAM),兩者在保護上即有所差異。VRU之保護服務是未來車聯網應用之關鍵與道路交通安全核心目標之一,相關系統與感測技術亦在不斷提升,未來更能融合感測器技術,並預測行人可能路徑,將全面提升道路安全。

美國最高法院判決診斷方法不具可專利性

  美國最高法院近日在Mayo Collaborative Services與Prometheus Laboratories一案中判決2項與免疫疾病有關的診斷方法專利無效,業界擔憂該判決將對處於新興發展階段的個人化醫療領域的研發投入與創新有著負面影響。   本案源於Prometheus所擁有的在不同劑量下thiopurine藥物代謝情況的診斷方法專利(由於病患的藥物代謝率不同,因此醫生在判斷特定病患的藥物劑量高低有相當的困難度),Mayo購買使用Prometheus的診斷方法後, 2004年Mayo開始對外販售自己的診斷方法。Prometheus主張Mayo侵害其專利,聯邦地方法院認為該專利建構於自然法則與現象上,因此不具可專利性,但聯邦巡迴上訴法院則有不同的看法,本案因此一路爭執至最高法院。   對於自然法則、現象以及抽象的概念,基於其作為科技發展的基礎工具,為避免妨礙創新發展,一直以來法院都持不具可專利性的看法。在相關的前案中,唯有在自然法則之外,包含創新概念的元素,才能超越自然法則本身而成為專利。本案中最高法院表示,本案專利方法步驟,不符合前述基於創新概念而授與專利的條件,且該方法步驟為該領域人所熟知、常用,授與專利將導致既有的自然法則被不當的受限而影響後續進一步的發現。   評論者表示儘管該判決並未提供一個清楚的判斷標準,但並不因此讓下級法院對這類的個人化醫療專利全數否決。然本案對於可專利性客體的判斷,影響將不僅止於生命科學,進而包括所有涉及可專利性客體的軟體、商業方法類型專利,後續影響值得持續關注。

TOP