美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
世界智慧財產權組織發布2020世界智慧財產權指標報告,世界專利申請數於近十年首度下降世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年12月7日發布2020年世界智慧財產權指標報告(World Intellectual Property Indicators 2020, WIPI 2020)。WIPI年度報告蒐研分析150個國家及地區的智財統計資料,作為商務人士、投資者、學界和創業家參考指標。該份報告顯示,全球的商標與設計專利的申請活動成長約5.9%和1.3%,然而受到了中國專利申請量下降的影響,2019年全球專利申請下降3%,這也是近10年來首度下降;若扣除中國不計,2019年全球專利申請數量成長2.3%。 該份報告除了彙整國際整體數據以外,依專利、商標、工業設計、植物品種、地理標示等不同主題分別統計。在專利部分,中國大陸國家知識產權局、美國專利商標局分別為收到專利申請提交數量之前兩名;接續為日本、韓國和歐盟。這五大智財當局合計占全球總數之84.7%。其中韓國、歐盟和美國申請數量均有成長,中國大陸申請數量下降達9.2%,亦為中國大陸24年來首度下降,報告說明其因為中國大陸改善申請案結構和申請品質之故,致中國大陸國內公民之申請量減少10.8%,而國外申請量仍保持成長。 另外在商標部分,受理申請數量最多之前六個國家分別為中國、美國、日本和伊朗和歐盟;而2018年到2019年間受理申請增加幅度最多者為巴西、越南、伊朗、俄國和土耳其。據估計,2019年全球有效商標註冊量為5820萬,較2018年成長15.2%,且中國就囊括約2520萬,其次為美國的280萬和印度的200萬。針對中國大陸商標和專利申請數量為世界之冠,引起全球關注,美國專利商標局(USPTO)亦在2021年1月13日發布研究報告,指出中國大陸商標和專利申請案數量可能源自政府補貼或其他非市場因素的影響;其中又以政府補貼為刺激商標與專利申請案件數增長的最大可能原因。而這些非市場因素的商標及專利申請案件可能誤導世界對中國大陸創新能力的評估。 在工業設計(Industrial designs)方面,2019年全球提交136萬件設計專利申請,其中104萬件為工業設計;而中國大陸的工業設計申請量就囊括約71萬件。若以類型區分,和家具有關的設計專利比例為全球9.4%,其次是服裝(8.1%)以及包裝和容器(7.3%)。植物品種(Plant varieties)部分,中國大陸智財當局於2019年收到了7834種植物新品種申請,較2018年成長36%,同時也占全球植物品種申請的三分之一以上。地理標示(Geographical indications)部分,截至2019年和葡萄酒及烈酒有關的地理標示約為全球地理標示的56.6%,其次是農產品/食品(34.2%)和手工藝品(3.5%)。
「反間諜程式法草案」於參議院尋求闖關通過美國眾議院已於本週(2007.05.23)口頭表決通過「反間諜程式法草案」,未來將有待於參議院表決通過後,公佈施行該法。 間諜程式通常是指涉收集電腦使用者資訊的惡意軟體,該惡意軟體通常係安裝免費軟體中不知名的某個套件,或者是隱含在所下載網路遊戲程式中、不請自來的廣告頁面或者電腦中毒所導致。其危險之處即在於,該惡意軟體將使電腦使用者的使用者帳號、密碼以及個人金融帳目細節等等個人資料傳遞出去,以詐欺該使用者。 由於該法案要求程式開發商於使用者下載此類程式前,需要提醒使用者以及獲得他們的同意,因此,軟體產業非常反對該項規範。 據了解,美國眾議院已於2004年及2005年以壓倒性的勝利表決通過「反間諜軟體法案」,惟當時該法案並無法獲得參議院的青睞,而慘遭否決。
美國的全球食品追溯中心(GFTC)提出食品追溯的「關鍵追蹤事項」及「重點資料元素」架構在近來國際食安問題事件頻傳的氛圍下,如何透過食品供應鏈相關資料的紀錄、串接與分析,達到食品追溯(Food Traceability)目的已成為全球性議題。有鑑於此,美國的全球食品追溯中心(Global Food Traceability Center, GFTC)在跨種類的食品供應鏈中針對數位資料的採集和追蹤,以建立共通架構為目的,提出食品追溯的「關鍵追蹤活動」以及「重點資料元素」,作為監管機構和產業界在建立追溯系統時可依循的標準。 由於現今食品供應系統涉及範圍大部分已擴及全球,其複雜性大幅提升了各國政府對整個食品產業的監管以及促進追溯實踐的困難度。隸屬美國食品科技研究所(IFT)的GFTC於2014年8月19日發表了一篇「食品追溯最佳實踐指南」(A Guidance Document on the Best Practices in Food Traceability)報告,指出當食品相關疫情爆發時進行食品追溯即有全球性的需求;該指南主要以食品安全及追溯相關規範的立法者和食品產業界為對象,針對六大類食品產業-烘焙、奶製品、肉類及家禽、加工食品、農產品和海產類提供一個可茲遵循的追蹤架構。在一條食品供應鏈中,有許多環節是進行追蹤時必要的資訊採集重點,被視為「關鍵追蹤活動」(Critical tracking events, CTEs),而各種「關鍵追蹤活動」的紀錄項目即為「重點資料元素」(Key data elements, KDEs)。 根據該指南所定義的CTEs包含: 1.運輸活動(Transportation events)-食品的外部追蹤,包括「運送活動」(Shipping CTE)和「接收活動」(Receiving CTE),指食品在供應鏈的點跟點之間藉由空運、陸運或船運等物理性的移動。 2.轉換活動(Transformation events)-食品的內部追蹤,連結食品經過各種結合、烹煮、包裝等加工的輸入到輸出過程,包括「轉換輸入活動」(Transformation Input CTE)和「轉換輸出活動」(Transformation Output CTE)。 3.消耗活動(Depletion events)-係將食品從供應鏈上去除的活動。其中,「消費活動」(Consumption CTE),指食品呈現可供顧客消費狀態的活動,例如把新鮮農產品放在零售店供顧客選購;「最終處置活動」(Disposal CTE)指將食品毀棄、無法再作為其他食品的成分或無法再供消費的活動。 而紀錄上述CTEs的KDEs例如各項活動的擁有人、交易對象、日期時間、地點、產品、品質等,應將該指南所列出之各項KDEs理解為紀錄CTEs的最基本項目。目前最大的問題是食品監管的要求和產業界執行可行性間的差距,故如何縮小此差距仍為各國政府當前最大的挑戰。